软交错复合材料的双模拉伸-剪切模型

IF 9.4 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Jiabao Bai , Daochen Yin , Yijie Cai , Zihang Shen , Genda Wang , Zheng Jia
{"title":"软交错复合材料的双模拉伸-剪切模型","authors":"Jiabao Bai ,&nbsp;Daochen Yin ,&nbsp;Yijie Cai ,&nbsp;Zihang Shen ,&nbsp;Genda Wang ,&nbsp;Zheng Jia","doi":"10.1016/j.ijmecsci.2025.110818","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging advancements in bioinspired composite research have refocused attention on architecture-property interactions within staggered hard/soft phase systems, particularly in soft staggered composites. Classical tension-shear chain (TSC) models fail to predict modulus in soft staggered composites with moderate-to-low modulus ratios (&lt;1000) due to their neglect of soft-phase tensile contributions. To resolve this limitation, we develop a dual-mode tension-shear (DTS) constitutive model that unifies soft-phase tensile deformation and interfacial shear transfer. Validated by finite element analysis and heterogeneous ionogel experiments, the DTS model achieves high-accuracy modulus predictions across the full modulus-ratio spectrum (2–1000). Beyond infinitesimal strain characterization, DTS uniquely reconstructs full-range nonlinear stress-stretch responses without empirical calibration through phase-specific constitutive behaviors. This capability dramatically accelerates material development cycles. By bridging biomimetic theory with synthetic innovation, the framework enables optimized design of adaptive biomedical scaffolds, energy-dissipative metamaterials, and multifunctional tissue analogues.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"306 ","pages":"Article 110818"},"PeriodicalIF":9.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-mode tension-shear model for soft staggered composites\",\"authors\":\"Jiabao Bai ,&nbsp;Daochen Yin ,&nbsp;Yijie Cai ,&nbsp;Zihang Shen ,&nbsp;Genda Wang ,&nbsp;Zheng Jia\",\"doi\":\"10.1016/j.ijmecsci.2025.110818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Emerging advancements in bioinspired composite research have refocused attention on architecture-property interactions within staggered hard/soft phase systems, particularly in soft staggered composites. Classical tension-shear chain (TSC) models fail to predict modulus in soft staggered composites with moderate-to-low modulus ratios (&lt;1000) due to their neglect of soft-phase tensile contributions. To resolve this limitation, we develop a dual-mode tension-shear (DTS) constitutive model that unifies soft-phase tensile deformation and interfacial shear transfer. Validated by finite element analysis and heterogeneous ionogel experiments, the DTS model achieves high-accuracy modulus predictions across the full modulus-ratio spectrum (2–1000). Beyond infinitesimal strain characterization, DTS uniquely reconstructs full-range nonlinear stress-stretch responses without empirical calibration through phase-specific constitutive behaviors. This capability dramatically accelerates material development cycles. By bridging biomimetic theory with synthetic innovation, the framework enables optimized design of adaptive biomedical scaffolds, energy-dissipative metamaterials, and multifunctional tissue analogues.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"306 \",\"pages\":\"Article 110818\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740325009002\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325009002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物复合材料研究的新进展重新将注意力集中在交错硬/软相系统中的结构-性能相互作用上,特别是在软交错复合材料中。经典的拉伸-剪切链(TSC)模型由于忽略了软相拉伸的贡献,无法预测中低模量比(<1000)的软交错复合材料的模量。为了解决这一限制,我们开发了一种统一软相拉伸变形和界面剪切传递的双模拉伸-剪切(DTS)本构模型。通过有限元分析和非均相电离凝胶实验验证,DTS模型在全模比光谱(2-1000)范围内实现了高精度模量预测。除了无穷小应变表征,DTS独特地重建全范围非线性应力-拉伸响应,无需经验校准,通过相特异性本构行为。这种能力大大加快了材料开发周期。通过将仿生理论与合成创新相结合,该框架能够优化设计自适应生物医学支架、能量耗散超材料和多功能组织类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-mode tension-shear model for soft staggered composites

Dual-mode tension-shear model for soft staggered composites
Emerging advancements in bioinspired composite research have refocused attention on architecture-property interactions within staggered hard/soft phase systems, particularly in soft staggered composites. Classical tension-shear chain (TSC) models fail to predict modulus in soft staggered composites with moderate-to-low modulus ratios (<1000) due to their neglect of soft-phase tensile contributions. To resolve this limitation, we develop a dual-mode tension-shear (DTS) constitutive model that unifies soft-phase tensile deformation and interfacial shear transfer. Validated by finite element analysis and heterogeneous ionogel experiments, the DTS model achieves high-accuracy modulus predictions across the full modulus-ratio spectrum (2–1000). Beyond infinitesimal strain characterization, DTS uniquely reconstructs full-range nonlinear stress-stretch responses without empirical calibration through phase-specific constitutive behaviors. This capability dramatically accelerates material development cycles. By bridging biomimetic theory with synthetic innovation, the framework enables optimized design of adaptive biomedical scaffolds, energy-dissipative metamaterials, and multifunctional tissue analogues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信