丙型肝炎病毒(HCV)疾病免疫反应的数学模型

Q1 Mathematics
Amna H.A. Ibrahim, Hermane Mambili Mamboundou
{"title":"丙型肝炎病毒(HCV)疾病免疫反应的数学模型","authors":"Amna H.A. Ibrahim,&nbsp;Hermane Mambili Mamboundou","doi":"10.1016/j.padiff.2025.101275","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a mathematical model that comprehensively analyzes the dynamics of Hepatitis C Virus (HCV) infection. The model based on a system of nonlinear differential equations captures the interactions between liver cells (hepatocytes), the Hepatitis C virus, immune cells, and cytokines dynamics. We establish the well-posedness of the model within a biologically feasible region. Using the next-generation method, we calculate the basic reproduction number, <span><math><msub><mrow><mi>ℜ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, a threshold parameter that determines whether the infection will spread or die. A sensitivity analysis is also performed to identify the parameters that most significantly influence this number. We derive the conditions for the stability of disease-free and endemic equilibrium. The model is then used to investigate the system’s behavior under various scenarios: a weak immune response, the absence of T helper cell support, and a strong immune response. Our simulations show that the lack of interleukin-2 (IL-2) significantly affects the activation of cytotoxic T lymphocyte (CTLs). These results underscore the importance of including T helper cells, Interferon<span><math><mrow><mo>−</mo><mi>γ</mi></mrow></math></span> (IFN-<span><math><mi>γ</mi></math></span>) and IL-2 for an accurate representation of the dynamics of hepatitis C virus infection. Ultimately, this study deepens our understanding of the dynamics of HCV infection and simplifies how specific immune components shape the course of the disease.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101275"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical model of immune response to Hepatitis C virus (HCV) disease\",\"authors\":\"Amna H.A. Ibrahim,&nbsp;Hermane Mambili Mamboundou\",\"doi\":\"10.1016/j.padiff.2025.101275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a mathematical model that comprehensively analyzes the dynamics of Hepatitis C Virus (HCV) infection. The model based on a system of nonlinear differential equations captures the interactions between liver cells (hepatocytes), the Hepatitis C virus, immune cells, and cytokines dynamics. We establish the well-posedness of the model within a biologically feasible region. Using the next-generation method, we calculate the basic reproduction number, <span><math><msub><mrow><mi>ℜ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, a threshold parameter that determines whether the infection will spread or die. A sensitivity analysis is also performed to identify the parameters that most significantly influence this number. We derive the conditions for the stability of disease-free and endemic equilibrium. The model is then used to investigate the system’s behavior under various scenarios: a weak immune response, the absence of T helper cell support, and a strong immune response. Our simulations show that the lack of interleukin-2 (IL-2) significantly affects the activation of cytotoxic T lymphocyte (CTLs). These results underscore the importance of including T helper cells, Interferon<span><math><mrow><mo>−</mo><mi>γ</mi></mrow></math></span> (IFN-<span><math><mi>γ</mi></math></span>) and IL-2 for an accurate representation of the dynamics of hepatitis C virus infection. Ultimately, this study deepens our understanding of the dynamics of HCV infection and simplifies how specific immune components shape the course of the disease.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"16 \",\"pages\":\"Article 101275\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125002025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个全面分析丙型肝炎病毒(HCV)感染动态的数学模型。该模型基于非线性微分方程系统,捕获肝细胞(肝细胞)、丙型肝炎病毒、免疫细胞和细胞因子动力学之间的相互作用。我们在一个生物可行的区域内建立了模型的适定性。使用新一代方法,我们计算基本繁殖数,即确定感染是否会传播或死亡的阈值参数。还进行了敏感性分析,以确定对该数字影响最大的参数。导出了无病平衡和地方病平衡稳定的条件。然后使用该模型来研究系统在各种情况下的行为:弱免疫反应,缺乏T辅助细胞支持和强免疫反应。我们的模拟表明,白细胞介素-2 (IL-2)的缺乏显著影响细胞毒性T淋巴细胞(ctl)的激活。这些结果强调了T辅助细胞、干扰素-γ (IFN-γ)和IL-2对于准确表征丙型肝炎病毒感染动力学的重要性。最终,这项研究加深了我们对HCV感染动力学的理解,简化了特定免疫成分如何塑造疾病的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical model of immune response to Hepatitis C virus (HCV) disease
This paper presents a mathematical model that comprehensively analyzes the dynamics of Hepatitis C Virus (HCV) infection. The model based on a system of nonlinear differential equations captures the interactions between liver cells (hepatocytes), the Hepatitis C virus, immune cells, and cytokines dynamics. We establish the well-posedness of the model within a biologically feasible region. Using the next-generation method, we calculate the basic reproduction number, 0, a threshold parameter that determines whether the infection will spread or die. A sensitivity analysis is also performed to identify the parameters that most significantly influence this number. We derive the conditions for the stability of disease-free and endemic equilibrium. The model is then used to investigate the system’s behavior under various scenarios: a weak immune response, the absence of T helper cell support, and a strong immune response. Our simulations show that the lack of interleukin-2 (IL-2) significantly affects the activation of cytotoxic T lymphocyte (CTLs). These results underscore the importance of including T helper cells, Interferonγ (IFN-γ) and IL-2 for an accurate representation of the dynamics of hepatitis C virus infection. Ultimately, this study deepens our understanding of the dynamics of HCV infection and simplifies how specific immune components shape the course of the disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信