生物打印多材料喷嘴几何设计优化

IF 11.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Jun Sim, Wan Kyun Chung
{"title":"生物打印多材料喷嘴几何设计优化","authors":"Jun Sim,&nbsp;Wan Kyun Chung","doi":"10.1016/j.addma.2025.104959","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-material additive manufacturing (AM) introduces complex challenges in maintaining stable and controllable flow within the printing nozzle, where flow disturbances such as backflow, excessive shear stress, and delayed material transitions can compromise print uniformity and cell viability. These issues are particularly pronounced when handling non-Newtonian, yield stress bioinks such as Herschel–Bulkley fluids. Motivated by on-the-fly material switching, we explicitly scope the optimization to a one-ink-on/one-ink-idle Y-junction in which one inlet is driven while the other remains idle. This study presents a simulation-driven optimization framework for multi-material Y-junction nozzle geometry aimed at improving backflow suppression, shear-stress minimization, and rapid material switching. A numerical model quantifies three key performance indices as backflow potential, maximum wall shear stress, and switching time index across a four dimensional design space. High fidelity CFD simulations generate training data for a Gaussian Process surrogate with a Matérn kernel, and Bayesian optimization efficiently identifies optimal geometries. The optimized designs achieve significant reductions in backflow, peak shear stress, and outlet refill time compared to baseline nozzles. Experimental validation comprising cell viability assays on high versus low shear designs, air filled backflow tests in a worst-case setup, and on-the-fly switching time measurements corroborates all three cost components. Our findings deliver a robust, scalable, and experimentally validated methodology for multi-material nozzle design, with broad implications for precision, speed, and biological functionality in extrusion-based bioprinting.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"111 ","pages":"Article 104959"},"PeriodicalIF":11.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-material nozzle geometry design optimization for bioprinting\",\"authors\":\"Jun Sim,&nbsp;Wan Kyun Chung\",\"doi\":\"10.1016/j.addma.2025.104959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-material additive manufacturing (AM) introduces complex challenges in maintaining stable and controllable flow within the printing nozzle, where flow disturbances such as backflow, excessive shear stress, and delayed material transitions can compromise print uniformity and cell viability. These issues are particularly pronounced when handling non-Newtonian, yield stress bioinks such as Herschel–Bulkley fluids. Motivated by on-the-fly material switching, we explicitly scope the optimization to a one-ink-on/one-ink-idle Y-junction in which one inlet is driven while the other remains idle. This study presents a simulation-driven optimization framework for multi-material Y-junction nozzle geometry aimed at improving backflow suppression, shear-stress minimization, and rapid material switching. A numerical model quantifies three key performance indices as backflow potential, maximum wall shear stress, and switching time index across a four dimensional design space. High fidelity CFD simulations generate training data for a Gaussian Process surrogate with a Matérn kernel, and Bayesian optimization efficiently identifies optimal geometries. The optimized designs achieve significant reductions in backflow, peak shear stress, and outlet refill time compared to baseline nozzles. Experimental validation comprising cell viability assays on high versus low shear designs, air filled backflow tests in a worst-case setup, and on-the-fly switching time measurements corroborates all three cost components. Our findings deliver a robust, scalable, and experimentally validated methodology for multi-material nozzle design, with broad implications for precision, speed, and biological functionality in extrusion-based bioprinting.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"111 \",\"pages\":\"Article 104959\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860425003239\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425003239","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

多材料增材制造(AM)在保持打印喷嘴内稳定和可控的流动方面带来了复杂的挑战,其中回流、过度剪切应力和延迟的材料过渡等流动干扰会损害打印均匀性和细胞活力。这些问题在处理非牛顿屈服应力生物油墨(如Herschel-Bulkley流体)时尤为明显。在动态材料切换的激励下,我们明确地将优化范围扩展到一个墨水上/一个墨水空闲的y结,其中一个入口被驱动,而另一个保持空闲。本研究提出了一个模拟驱动的多材料y结喷嘴几何结构优化框架,旨在改善回流抑制、剪切应力最小化和快速材料切换。一个数值模型量化了三个关键性能指标,即回流势、最大壁面剪切应力和跨四维设计空间的切换时间指标。高保真CFD仿真生成具有mat核的高斯过程代理的训练数据,贝叶斯优化有效地识别出最优几何形状。与基准喷嘴相比,优化设计显著降低了回流、峰值剪切应力和出口重新注入时间。实验验证包括高剪切和低剪切设计下的细胞活力分析、最坏情况下的充气回流测试以及实时切换时间测量,证实了所有三个成本组成部分。我们的研究结果为多材料喷嘴设计提供了一种强大的、可扩展的、经过实验验证的方法,对挤压生物打印的精度、速度和生物功能具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-material nozzle geometry design optimization for bioprinting
Multi-material additive manufacturing (AM) introduces complex challenges in maintaining stable and controllable flow within the printing nozzle, where flow disturbances such as backflow, excessive shear stress, and delayed material transitions can compromise print uniformity and cell viability. These issues are particularly pronounced when handling non-Newtonian, yield stress bioinks such as Herschel–Bulkley fluids. Motivated by on-the-fly material switching, we explicitly scope the optimization to a one-ink-on/one-ink-idle Y-junction in which one inlet is driven while the other remains idle. This study presents a simulation-driven optimization framework for multi-material Y-junction nozzle geometry aimed at improving backflow suppression, shear-stress minimization, and rapid material switching. A numerical model quantifies three key performance indices as backflow potential, maximum wall shear stress, and switching time index across a four dimensional design space. High fidelity CFD simulations generate training data for a Gaussian Process surrogate with a Matérn kernel, and Bayesian optimization efficiently identifies optimal geometries. The optimized designs achieve significant reductions in backflow, peak shear stress, and outlet refill time compared to baseline nozzles. Experimental validation comprising cell viability assays on high versus low shear designs, air filled backflow tests in a worst-case setup, and on-the-fly switching time measurements corroborates all three cost components. Our findings deliver a robust, scalable, and experimentally validated methodology for multi-material nozzle design, with broad implications for precision, speed, and biological functionality in extrusion-based bioprinting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信