ObjSegAD-Net:基于区域感知的伪缺陷注入和双分支架构的无监督工业异常检测

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaohua Dong, Fangxu Hu, Bing Wei, Yi Wu
{"title":"ObjSegAD-Net:基于区域感知的伪缺陷注入和双分支架构的无监督工业异常检测","authors":"Shaohua Dong,&nbsp;Fangxu Hu,&nbsp;Bing Wei,&nbsp;Yi Wu","doi":"10.1016/j.inffus.2025.103707","DOIUrl":null,"url":null,"abstract":"<div><div>Anomaly detection in industrial manufacturing identifies product defects. However, limited anomalous samples and background noise often reduce accuracy and increase false alarms. To solve this, we propose ObjSegAD-Net, an unsupervised anomaly detection method. It separates each image into foreground and background regions. It uses foreground-guided pseudo-defect synthesis to inject diverse synthetic anomalies, boosting data diversity with more pseudo-samples. For the background, it adds noise such as Gaussian blur, helping the model distinguish true defects from irrelevant variations. During inference, ObjSegAD-Net adopts a dual-branch architecture with region-aware attention mechanisms, which adaptively enhances responses to foreground anomalies while suppressing background interference. This design significantly reduces false positives and improves detection accuracy under complex noisy conditions. ObjSegAD-Net achieves state-of-the-art results on multiple industrial anomaly detection benchmarks, demonstrating the robustness and generalization capabilities of its region-aware pseudo-defect generation and dual-task architecture.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103707"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ObjSegAD-Net: Region-aware pseudo-defect injection and dual-branch architecture for unsupervised industrial anomaly detection\",\"authors\":\"Shaohua Dong,&nbsp;Fangxu Hu,&nbsp;Bing Wei,&nbsp;Yi Wu\",\"doi\":\"10.1016/j.inffus.2025.103707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anomaly detection in industrial manufacturing identifies product defects. However, limited anomalous samples and background noise often reduce accuracy and increase false alarms. To solve this, we propose ObjSegAD-Net, an unsupervised anomaly detection method. It separates each image into foreground and background regions. It uses foreground-guided pseudo-defect synthesis to inject diverse synthetic anomalies, boosting data diversity with more pseudo-samples. For the background, it adds noise such as Gaussian blur, helping the model distinguish true defects from irrelevant variations. During inference, ObjSegAD-Net adopts a dual-branch architecture with region-aware attention mechanisms, which adaptively enhances responses to foreground anomalies while suppressing background interference. This design significantly reduces false positives and improves detection accuracy under complex noisy conditions. ObjSegAD-Net achieves state-of-the-art results on multiple industrial anomaly detection benchmarks, demonstrating the robustness and generalization capabilities of its region-aware pseudo-defect generation and dual-task architecture.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"127 \",\"pages\":\"Article 103707\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525007791\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525007791","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

工业制造中的异常检测用于识别产品缺陷。然而,有限的异常样本和背景噪声往往会降低准确性,增加误报。为了解决这一问题,我们提出了一种无监督异常检测方法ObjSegAD-Net。它将每个图像分成前景和背景区域。利用前景引导伪缺陷合成注入多种合成异常,以更多的伪样本增强数据多样性。对于背景,它增加了高斯模糊等噪声,帮助模型从不相关的变化中区分真正的缺陷。在推理过程中,ObjSegAD-Net采用双分支架构和区域感知注意机制,在抑制背景干扰的同时自适应增强对前景异常的响应。该设计显著降低了误报,提高了复杂噪声条件下的检测精度。ObjSegAD-Net在多个工业异常检测基准上取得了最先进的结果,展示了其区域感知伪缺陷生成和双任务架构的鲁棒性和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ObjSegAD-Net: Region-aware pseudo-defect injection and dual-branch architecture for unsupervised industrial anomaly detection
Anomaly detection in industrial manufacturing identifies product defects. However, limited anomalous samples and background noise often reduce accuracy and increase false alarms. To solve this, we propose ObjSegAD-Net, an unsupervised anomaly detection method. It separates each image into foreground and background regions. It uses foreground-guided pseudo-defect synthesis to inject diverse synthetic anomalies, boosting data diversity with more pseudo-samples. For the background, it adds noise such as Gaussian blur, helping the model distinguish true defects from irrelevant variations. During inference, ObjSegAD-Net adopts a dual-branch architecture with region-aware attention mechanisms, which adaptively enhances responses to foreground anomalies while suppressing background interference. This design significantly reduces false positives and improves detection accuracy under complex noisy conditions. ObjSegAD-Net achieves state-of-the-art results on multiple industrial anomaly detection benchmarks, demonstrating the robustness and generalization capabilities of its region-aware pseudo-defect generation and dual-task architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信