Hélio V. Cabral , J. Greig Inglis , Elmira Pourreza , Milena A. Dos Santos , Caterina Cosentino , David O’Reilly , Ioannis Delis , Francesco Negro
{"title":"脊髓运动神经元活动的单一低维神经成分解释了重复性等距任务中的力产生","authors":"Hélio V. Cabral , J. Greig Inglis , Elmira Pourreza , Milena A. Dos Santos , Caterina Cosentino , David O’Reilly , Ioannis Delis , Francesco Negro","doi":"10.1016/j.isci.2025.113483","DOIUrl":null,"url":null,"abstract":"<div><div>Low-dimensional control is thought to underlie spinal motor neuron activity, with low-frequency oscillations in common synaptic inputs serving as the primary determinant of muscle force production. Here, we used principal-component analysis and factor analysis to investigate the role of low-dimensional motor unit components in force production during repetitive isometric tasks with similar force profiles. In both individual and synergistic human muscles, the first motor unit component explained most of the variance in smoothed discharge rates and showed higher correlations with force oscillations than the second component. Additionally, the first component, but not the second, remained highly consistent across trials. A non-linear network-information framework further confirmed these findings, revealing high motor unit network density in the first component across all muscles. These results suggest that during isometric contractions, force oscillations are primarily driven by a single dominant shared synaptic input to spinal motor neuron activity.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 10","pages":"Article 113483"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single low-dimensional neural component of spinal motor neuron activity explains force generation across repetitive isometric tasks\",\"authors\":\"Hélio V. Cabral , J. Greig Inglis , Elmira Pourreza , Milena A. Dos Santos , Caterina Cosentino , David O’Reilly , Ioannis Delis , Francesco Negro\",\"doi\":\"10.1016/j.isci.2025.113483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-dimensional control is thought to underlie spinal motor neuron activity, with low-frequency oscillations in common synaptic inputs serving as the primary determinant of muscle force production. Here, we used principal-component analysis and factor analysis to investigate the role of low-dimensional motor unit components in force production during repetitive isometric tasks with similar force profiles. In both individual and synergistic human muscles, the first motor unit component explained most of the variance in smoothed discharge rates and showed higher correlations with force oscillations than the second component. Additionally, the first component, but not the second, remained highly consistent across trials. A non-linear network-information framework further confirmed these findings, revealing high motor unit network density in the first component across all muscles. These results suggest that during isometric contractions, force oscillations are primarily driven by a single dominant shared synaptic input to spinal motor neuron activity.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 10\",\"pages\":\"Article 113483\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225017444\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225017444","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A single low-dimensional neural component of spinal motor neuron activity explains force generation across repetitive isometric tasks
Low-dimensional control is thought to underlie spinal motor neuron activity, with low-frequency oscillations in common synaptic inputs serving as the primary determinant of muscle force production. Here, we used principal-component analysis and factor analysis to investigate the role of low-dimensional motor unit components in force production during repetitive isometric tasks with similar force profiles. In both individual and synergistic human muscles, the first motor unit component explained most of the variance in smoothed discharge rates and showed higher correlations with force oscillations than the second component. Additionally, the first component, but not the second, remained highly consistent across trials. A non-linear network-information framework further confirmed these findings, revealing high motor unit network density in the first component across all muscles. These results suggest that during isometric contractions, force oscillations are primarily driven by a single dominant shared synaptic input to spinal motor neuron activity.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.