湿法催化氧化升级回收半干法烟气脱硫灰分为可持续石膏

IF 4.1 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hao-Qin Xiong , Jia-Zhuo Qu , Zhe-Xi Luan , Xiao-Long Sun , Xiang-Yang Mei
{"title":"湿法催化氧化升级回收半干法烟气脱硫灰分为可持续石膏","authors":"Hao-Qin Xiong ,&nbsp;Jia-Zhuo Qu ,&nbsp;Zhe-Xi Luan ,&nbsp;Xiao-Long Sun ,&nbsp;Xiang-Yang Mei","doi":"10.1016/j.isci.2025.113476","DOIUrl":null,"url":null,"abstract":"<div><div>Semi-dry flue gas desulfurization ash (SFGDA), rich in calcium sulfite (CaSO<sub>3</sub>) and highly alkaline, poses challenges for direct reuse due to its instability and slow oxidation. This review synthesizes recent advances in wet catalytic oxidation (WCO) that transform CaSO<sub>3</sub> into construction-grade calcium sulfate (CaSO<sub>4</sub>). We frame homogeneous and heterogeneous radical-chain routes and lattice-defect activation, underscoring how Mn/Co/Fe redox cycles and oxygen-vacancy engineering accelerate conversion. Performance comparisons span conventional salts, metal-organic frameworks (MOFs), perovskites, and nanostructured catalysts, with Co-MOFs achieving 96% oxidation in 3 h and MnTiO<sub>3</sub> lowering activation energy by 40%. Process optimizations ultrasound assisted nanobubbles, micro-scale mass-transfer intensification, and pH control at 5–6 address diffusional and alkaline limitations, while layered double hydroxides and anti-scaling surfaces mitigate chloride poisoning and fouling. By merging mechanistic insights with technological progress, this work maps out a sustainable pathway for SFGDA management.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 10","pages":"Article 113476"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wet catalytic oxidation upcycling semi-dry flue gas desulfurization ash to sustainable gypsum\",\"authors\":\"Hao-Qin Xiong ,&nbsp;Jia-Zhuo Qu ,&nbsp;Zhe-Xi Luan ,&nbsp;Xiao-Long Sun ,&nbsp;Xiang-Yang Mei\",\"doi\":\"10.1016/j.isci.2025.113476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Semi-dry flue gas desulfurization ash (SFGDA), rich in calcium sulfite (CaSO<sub>3</sub>) and highly alkaline, poses challenges for direct reuse due to its instability and slow oxidation. This review synthesizes recent advances in wet catalytic oxidation (WCO) that transform CaSO<sub>3</sub> into construction-grade calcium sulfate (CaSO<sub>4</sub>). We frame homogeneous and heterogeneous radical-chain routes and lattice-defect activation, underscoring how Mn/Co/Fe redox cycles and oxygen-vacancy engineering accelerate conversion. Performance comparisons span conventional salts, metal-organic frameworks (MOFs), perovskites, and nanostructured catalysts, with Co-MOFs achieving 96% oxidation in 3 h and MnTiO<sub>3</sub> lowering activation energy by 40%. Process optimizations ultrasound assisted nanobubbles, micro-scale mass-transfer intensification, and pH control at 5–6 address diffusional and alkaline limitations, while layered double hydroxides and anti-scaling surfaces mitigate chloride poisoning and fouling. By merging mechanistic insights with technological progress, this work maps out a sustainable pathway for SFGDA management.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 10\",\"pages\":\"Article 113476\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225017377\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225017377","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

半干法烟气脱硫灰分(SFGDA)富含亚硫酸钙(CaSO3),且碱性强,由于其不稳定且氧化缓慢,对直接回用提出了挑战。本文综述了湿式催化氧化(WCO)将CaSO3转化为建筑级硫酸钙(CaSO4)的最新进展。我们构建了均相和非均相自由基链路径和晶格缺陷激活,强调了Mn/Co/Fe氧化还原循环和氧空位工程如何加速转化。对传统盐、金属有机骨架(MOFs)、钙钛矿和纳米结构催化剂的性能进行了比较,其中Co-MOFs在3小时内氧化率达到96%,而MnTiO3的活化能降低了40%。超声波辅助纳米气泡、微尺度传质强化和pH控制在5-6的工艺优化解决了扩散和碱性限制,而层状双氢氧化物和防结垢表面减轻了氯化物中毒和污染。通过将机制见解与技术进步相结合,本工作为SFGDA管理规划了一条可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wet catalytic oxidation upcycling semi-dry flue gas desulfurization ash to sustainable gypsum

Wet catalytic oxidation upcycling semi-dry flue gas desulfurization ash to sustainable gypsum
Semi-dry flue gas desulfurization ash (SFGDA), rich in calcium sulfite (CaSO3) and highly alkaline, poses challenges for direct reuse due to its instability and slow oxidation. This review synthesizes recent advances in wet catalytic oxidation (WCO) that transform CaSO3 into construction-grade calcium sulfate (CaSO4). We frame homogeneous and heterogeneous radical-chain routes and lattice-defect activation, underscoring how Mn/Co/Fe redox cycles and oxygen-vacancy engineering accelerate conversion. Performance comparisons span conventional salts, metal-organic frameworks (MOFs), perovskites, and nanostructured catalysts, with Co-MOFs achieving 96% oxidation in 3 h and MnTiO3 lowering activation energy by 40%. Process optimizations ultrasound assisted nanobubbles, micro-scale mass-transfer intensification, and pH control at 5–6 address diffusional and alkaline limitations, while layered double hydroxides and anti-scaling surfaces mitigate chloride poisoning and fouling. By merging mechanistic insights with technological progress, this work maps out a sustainable pathway for SFGDA management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
iScience
iScience Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
1.70%
发文量
1972
审稿时长
6 weeks
期刊介绍: Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results. We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信