协调单原子石墨烯的连续和离散理论:不确定性和挑战

IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jian Wei Yan , Ling Hui He , C.W. Lim , Wei Zhang
{"title":"协调单原子石墨烯的连续和离散理论:不确定性和挑战","authors":"Jian Wei Yan ,&nbsp;Ling Hui He ,&nbsp;C.W. Lim ,&nbsp;Wei Zhang","doi":"10.1016/j.jmps.2025.106361","DOIUrl":null,"url":null,"abstract":"<div><div>Any nanomaterials with periodic, discrete structure exhibit scale effects, thus a common belief is that direct application of classical continuum theories is skeptical. Many studies reveal that there is significant difference between the classical continuum model and discrete model and thus a variety of modified continuum models have been proposed. Is it really impossible to harmonize the classical continuum and discrete theories? Here we show that there exist two distinct aspects for the concept of material thickness: intrinsic thickness and structural thickness, which correspond to the occupied space by physical particles and non-particle physical effect such as long-range force. For a suspended stacked-layer graphene, the most representative nanomaterial, the structural thickness produced by long-range force becomes a quantity that has a similar order with intrinsic thickness in terms of physical effects. While for monolayer graphene, the structural thickness does not exist because any long-range force vanishes. This discontinuity from mono- to multi-layer graphene leads to a highly controversial issue of applicability for the classical continuum theories. We thus reexamine the feasibility with respect to monolayer graphene and carbon nanotube, and devote to harmonize a missing bridge between the classical continuum mechanics and discrete mechanics models.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106361"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonizing continuum and discrete theories for monatomic graphene: Uncertainties and challenges\",\"authors\":\"Jian Wei Yan ,&nbsp;Ling Hui He ,&nbsp;C.W. Lim ,&nbsp;Wei Zhang\",\"doi\":\"10.1016/j.jmps.2025.106361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Any nanomaterials with periodic, discrete structure exhibit scale effects, thus a common belief is that direct application of classical continuum theories is skeptical. Many studies reveal that there is significant difference between the classical continuum model and discrete model and thus a variety of modified continuum models have been proposed. Is it really impossible to harmonize the classical continuum and discrete theories? Here we show that there exist two distinct aspects for the concept of material thickness: intrinsic thickness and structural thickness, which correspond to the occupied space by physical particles and non-particle physical effect such as long-range force. For a suspended stacked-layer graphene, the most representative nanomaterial, the structural thickness produced by long-range force becomes a quantity that has a similar order with intrinsic thickness in terms of physical effects. While for monolayer graphene, the structural thickness does not exist because any long-range force vanishes. This discontinuity from mono- to multi-layer graphene leads to a highly controversial issue of applicability for the classical continuum theories. We thus reexamine the feasibility with respect to monolayer graphene and carbon nanotube, and devote to harmonize a missing bridge between the classical continuum mechanics and discrete mechanics models.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"206 \",\"pages\":\"Article 106361\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625003357\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003357","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

任何具有周期性、离散结构的纳米材料都表现出尺度效应,因此人们普遍认为经典连续介质理论的直接应用是值得怀疑的。许多研究表明经典连续统模型与离散模型存在显著差异,因此提出了各种修正的连续统模型。难道真的不可能调和经典的连续和离散理论吗?在这里,我们证明了材料厚度的概念存在两个不同的方面:内在厚度和结构厚度,它们对应于物理粒子和非粒子物理效应(如远程力)所占据的空间。对于最具代表性的悬浮叠层石墨烯纳米材料而言,远程力产生的结构厚度在物理效应上与固有厚度具有相似的数量级。而对于单层石墨烯,结构厚度不存在,因为任何远程力都消失了。这种从单层到多层石墨烯的不连续导致了经典连续介质理论的适用性问题。因此,我们重新审视单层石墨烯和碳纳米管的可行性,并致力于协调经典连续介质力学和离散力学模型之间缺失的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harmonizing continuum and discrete theories for monatomic graphene: Uncertainties and challenges

Harmonizing continuum and discrete theories for monatomic graphene: Uncertainties and challenges
Any nanomaterials with periodic, discrete structure exhibit scale effects, thus a common belief is that direct application of classical continuum theories is skeptical. Many studies reveal that there is significant difference between the classical continuum model and discrete model and thus a variety of modified continuum models have been proposed. Is it really impossible to harmonize the classical continuum and discrete theories? Here we show that there exist two distinct aspects for the concept of material thickness: intrinsic thickness and structural thickness, which correspond to the occupied space by physical particles and non-particle physical effect such as long-range force. For a suspended stacked-layer graphene, the most representative nanomaterial, the structural thickness produced by long-range force becomes a quantity that has a similar order with intrinsic thickness in terms of physical effects. While for monolayer graphene, the structural thickness does not exist because any long-range force vanishes. This discontinuity from mono- to multi-layer graphene leads to a highly controversial issue of applicability for the classical continuum theories. We thus reexamine the feasibility with respect to monolayer graphene and carbon nanotube, and devote to harmonize a missing bridge between the classical continuum mechanics and discrete mechanics models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信