Xin Pang , Chang Zhang , Qicai Xiao , Yi Cheng , Qixuan Dai , Hu Chen , Sijia Tan , Gang Liu , Yun Zeng
{"title":"超声治疗纳米铁霉素通过超声引爆ROS产生和铁中毒样死亡根除细菌生物膜感染","authors":"Xin Pang , Chang Zhang , Qicai Xiao , Yi Cheng , Qixuan Dai , Hu Chen , Sijia Tan , Gang Liu , Yun Zeng","doi":"10.1016/j.bioactmat.2025.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>Biofilm formation poses a severe challenge to antibacterial stewardship. While siderophore-antibiotic conjugates (termed as sideromycins) offer a promising solution, their efficacy is inherently limited by antibiotic resistance. To transcend this barrier, we pioneer a transformative siderophore-sonosensitizer conjugate through covalent linkage of a catechol siderophore to purpurin 18 (a sonosensitizer). This novel conjugate further self-assembles with iron(III) ions, forming the first-reported carrier-free nanosideromycin—an all-in-on iron-siderophore-sonosensitizer nanoplatform. This design enables ultrasound-denotated reactive oxygen species (ROS) generation and ferroptosis-like amplication. Capitalizing on bacteria-specific siderophore uptake and pH-responsive assembly/disassembly, the nanosideromycin enables precision delivery and active internalization of sonosensitizers into bacteria. This strategy permits real-time localization of infections via concurrent fluorescence/photoacoustic and magnetic resonance imaging. Upon ultrasound irradiation, dual antimicrobial mechanisms of sonosensitizer-mediated sonodynamic therapy and siderophore/iron-augmented sono-Fenton catalysis are stimuonously unleashed, synergistically tirggering an explosive ROS burst and potent ferroptosis-like bacterial death. As a result, mice with multidrug-resistant biofilm-induced pyomyositis were completely cured. Collectively, this first-in-class theranostic nanosideromycin integrates highly-targeted imaging diagnostics, cost-effective yet ultra-efficient ROS generation, and ferroptosis-like bacterial killing, establishing a paradigm-shifting strategy for biofilm therapy with spatiotemporal controllability.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"55 ","pages":"Pages 241-256"},"PeriodicalIF":18.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonotheranostic nanosideromycin eradicates bacterial biofilm infections via ultrasound-detonated ROS generation and ferroptosis-like death\",\"authors\":\"Xin Pang , Chang Zhang , Qicai Xiao , Yi Cheng , Qixuan Dai , Hu Chen , Sijia Tan , Gang Liu , Yun Zeng\",\"doi\":\"10.1016/j.bioactmat.2025.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biofilm formation poses a severe challenge to antibacterial stewardship. While siderophore-antibiotic conjugates (termed as sideromycins) offer a promising solution, their efficacy is inherently limited by antibiotic resistance. To transcend this barrier, we pioneer a transformative siderophore-sonosensitizer conjugate through covalent linkage of a catechol siderophore to purpurin 18 (a sonosensitizer). This novel conjugate further self-assembles with iron(III) ions, forming the first-reported carrier-free nanosideromycin—an all-in-on iron-siderophore-sonosensitizer nanoplatform. This design enables ultrasound-denotated reactive oxygen species (ROS) generation and ferroptosis-like amplication. Capitalizing on bacteria-specific siderophore uptake and pH-responsive assembly/disassembly, the nanosideromycin enables precision delivery and active internalization of sonosensitizers into bacteria. This strategy permits real-time localization of infections via concurrent fluorescence/photoacoustic and magnetic resonance imaging. Upon ultrasound irradiation, dual antimicrobial mechanisms of sonosensitizer-mediated sonodynamic therapy and siderophore/iron-augmented sono-Fenton catalysis are stimuonously unleashed, synergistically tirggering an explosive ROS burst and potent ferroptosis-like bacterial death. As a result, mice with multidrug-resistant biofilm-induced pyomyositis were completely cured. Collectively, this first-in-class theranostic nanosideromycin integrates highly-targeted imaging diagnostics, cost-effective yet ultra-efficient ROS generation, and ferroptosis-like bacterial killing, establishing a paradigm-shifting strategy for biofilm therapy with spatiotemporal controllability.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"55 \",\"pages\":\"Pages 241-256\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25004268\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25004268","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sonotheranostic nanosideromycin eradicates bacterial biofilm infections via ultrasound-detonated ROS generation and ferroptosis-like death
Biofilm formation poses a severe challenge to antibacterial stewardship. While siderophore-antibiotic conjugates (termed as sideromycins) offer a promising solution, their efficacy is inherently limited by antibiotic resistance. To transcend this barrier, we pioneer a transformative siderophore-sonosensitizer conjugate through covalent linkage of a catechol siderophore to purpurin 18 (a sonosensitizer). This novel conjugate further self-assembles with iron(III) ions, forming the first-reported carrier-free nanosideromycin—an all-in-on iron-siderophore-sonosensitizer nanoplatform. This design enables ultrasound-denotated reactive oxygen species (ROS) generation and ferroptosis-like amplication. Capitalizing on bacteria-specific siderophore uptake and pH-responsive assembly/disassembly, the nanosideromycin enables precision delivery and active internalization of sonosensitizers into bacteria. This strategy permits real-time localization of infections via concurrent fluorescence/photoacoustic and magnetic resonance imaging. Upon ultrasound irradiation, dual antimicrobial mechanisms of sonosensitizer-mediated sonodynamic therapy and siderophore/iron-augmented sono-Fenton catalysis are stimuonously unleashed, synergistically tirggering an explosive ROS burst and potent ferroptosis-like bacterial death. As a result, mice with multidrug-resistant biofilm-induced pyomyositis were completely cured. Collectively, this first-in-class theranostic nanosideromycin integrates highly-targeted imaging diagnostics, cost-effective yet ultra-efficient ROS generation, and ferroptosis-like bacterial killing, establishing a paradigm-shifting strategy for biofilm therapy with spatiotemporal controllability.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.