Szymon Bobek , Paloma Korycińska , Monika Krakowska , Maciej Mozolewski , Dorota Rak , Magdalena Zych , Magdalena Wójcik , Grzegorz J. Nalepa
{"title":"以用户为中心的人工智能可解释性评价:一项全面的实证研究","authors":"Szymon Bobek , Paloma Korycińska , Monika Krakowska , Maciej Mozolewski , Dorota Rak , Magdalena Zych , Magdalena Wójcik , Grzegorz J. Nalepa","doi":"10.1016/j.ijhcs.2025.103625","DOIUrl":null,"url":null,"abstract":"<div><div>This study is located in the Human-Centered Artificial Intelligence (HCAI) and focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms, specifically investigating how humans understand and interact with the explanations provided by these algorithms. To achieve this, we employed a multi-disciplinary approach that included state-of-the-art research methods from social sciences to measure the comprehensibility of explanations generated by a state-of-the-art machine learning model, specifically the Gradient Boosting Classifier (XGBClassifier). We conducted an extensive empirical user study involving interviews with 39 participants from three different groups, each with varying expertise in data science, data visualisation, and domain-specific knowledge related to the dataset used for training the machine learning model. Participants were asked a series of questions to assess their understanding of the model’s explanations. To ensure replicability, we built the model using a publicly available dataset from the University of California Irvine Machine Learning Repository, focusing on edible and non-edible mushrooms. Our findings reveal limitations in existing XAI methods and confirm the need for new design principles and evaluation techniques that address the specific information needs and user perspectives of different classes of artificial intelligence (AI) stakeholders. We believe that the results of our research and the cross-disciplinary methodology we developed can be successfully adapted to various data types and user profiles, thus promoting dialogue and address opportunities in HCAI research. To support this, we are making the data resulting from our study publicly available.</div></div>","PeriodicalId":54955,"journal":{"name":"International Journal of Human-Computer Studies","volume":"205 ","pages":"Article 103625"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"User-centric evaluation of explainability of AI with and for humans: A comprehensive empirical study\",\"authors\":\"Szymon Bobek , Paloma Korycińska , Monika Krakowska , Maciej Mozolewski , Dorota Rak , Magdalena Zych , Magdalena Wójcik , Grzegorz J. Nalepa\",\"doi\":\"10.1016/j.ijhcs.2025.103625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study is located in the Human-Centered Artificial Intelligence (HCAI) and focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms, specifically investigating how humans understand and interact with the explanations provided by these algorithms. To achieve this, we employed a multi-disciplinary approach that included state-of-the-art research methods from social sciences to measure the comprehensibility of explanations generated by a state-of-the-art machine learning model, specifically the Gradient Boosting Classifier (XGBClassifier). We conducted an extensive empirical user study involving interviews with 39 participants from three different groups, each with varying expertise in data science, data visualisation, and domain-specific knowledge related to the dataset used for training the machine learning model. Participants were asked a series of questions to assess their understanding of the model’s explanations. To ensure replicability, we built the model using a publicly available dataset from the University of California Irvine Machine Learning Repository, focusing on edible and non-edible mushrooms. Our findings reveal limitations in existing XAI methods and confirm the need for new design principles and evaluation techniques that address the specific information needs and user perspectives of different classes of artificial intelligence (AI) stakeholders. We believe that the results of our research and the cross-disciplinary methodology we developed can be successfully adapted to various data types and user profiles, thus promoting dialogue and address opportunities in HCAI research. To support this, we are making the data resulting from our study publicly available.</div></div>\",\"PeriodicalId\":54955,\"journal\":{\"name\":\"International Journal of Human-Computer Studies\",\"volume\":\"205 \",\"pages\":\"Article 103625\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Human-Computer Studies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107158192500182X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Human-Computer Studies","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107158192500182X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
User-centric evaluation of explainability of AI with and for humans: A comprehensive empirical study
This study is located in the Human-Centered Artificial Intelligence (HCAI) and focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms, specifically investigating how humans understand and interact with the explanations provided by these algorithms. To achieve this, we employed a multi-disciplinary approach that included state-of-the-art research methods from social sciences to measure the comprehensibility of explanations generated by a state-of-the-art machine learning model, specifically the Gradient Boosting Classifier (XGBClassifier). We conducted an extensive empirical user study involving interviews with 39 participants from three different groups, each with varying expertise in data science, data visualisation, and domain-specific knowledge related to the dataset used for training the machine learning model. Participants were asked a series of questions to assess their understanding of the model’s explanations. To ensure replicability, we built the model using a publicly available dataset from the University of California Irvine Machine Learning Repository, focusing on edible and non-edible mushrooms. Our findings reveal limitations in existing XAI methods and confirm the need for new design principles and evaluation techniques that address the specific information needs and user perspectives of different classes of artificial intelligence (AI) stakeholders. We believe that the results of our research and the cross-disciplinary methodology we developed can be successfully adapted to various data types and user profiles, thus promoting dialogue and address opportunities in HCAI research. To support this, we are making the data resulting from our study publicly available.
期刊介绍:
The International Journal of Human-Computer Studies publishes original research over the whole spectrum of work relevant to the theory and practice of innovative interactive systems. The journal is inherently interdisciplinary, covering research in computing, artificial intelligence, psychology, linguistics, communication, design, engineering, and social organization, which is relevant to the design, analysis, evaluation and application of innovative interactive systems. Papers at the boundaries of these disciplines are especially welcome, as it is our view that interdisciplinary approaches are needed for producing theoretical insights in this complex area and for effective deployment of innovative technologies in concrete user communities.
Research areas relevant to the journal include, but are not limited to:
• Innovative interaction techniques
• Multimodal interaction
• Speech interaction
• Graphic interaction
• Natural language interaction
• Interaction in mobile and embedded systems
• Interface design and evaluation methodologies
• Design and evaluation of innovative interactive systems
• User interface prototyping and management systems
• Ubiquitous computing
• Wearable computers
• Pervasive computing
• Affective computing
• Empirical studies of user behaviour
• Empirical studies of programming and software engineering
• Computer supported cooperative work
• Computer mediated communication
• Virtual reality
• Mixed and augmented Reality
• Intelligent user interfaces
• Presence
...