铁素体钢塑性变形产生的晶间晶格应变的晶粒尺寸依赖性

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yo Tomota , Hongxing Li , Noriyuki Tsuchida , Wu Gong , Stefanus Harjo , Takahito Ohmura
{"title":"铁素体钢塑性变形产生的晶间晶格应变的晶粒尺寸依赖性","authors":"Yo Tomota ,&nbsp;Hongxing Li ,&nbsp;Noriyuki Tsuchida ,&nbsp;Wu Gong ,&nbsp;Stefanus Harjo ,&nbsp;Takahito Ohmura","doi":"10.1016/j.msea.2025.149136","DOIUrl":null,"url":null,"abstract":"<div><div>The uniaxial deformation behavior of low-carbon ferritic steels with grain sizes of 0.47 μm and 1.5 μm was investigated using <em>in situ</em> neutron diffraction measurements under both tensile and compressive loading. The analysis focused on the evolution of &lt;hkl&gt; lattice (elastic) strains, originating from anisotropy in &lt;hkl&gt; elastic moduli and differences in plastic flow among grains. Such plastic strain incompatibilities produce &lt;hkl&gt; intergranular lattice strains (or stresses). The experiments revealed substantial residual &lt;hkl&gt; intergranular lattice strains following both tensile and compressive plastic deformation. Transmission electron microscopy confirmed the grain-size dependence of dislocation structures formed during plastic flow, suggesting that plastic relaxation near grain boundaries becomes increasingly constrained with grain refinement. Overall, the results demonstrate that the magnitude of residual &lt;hkl&gt; intergranular lattice strains increases as grain size decreases from several tens of micrometers down to 0.5 μm.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149136"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain size dependence of <hkl> intergranular lattice strain generated by plastic deformation in ferritic steel\",\"authors\":\"Yo Tomota ,&nbsp;Hongxing Li ,&nbsp;Noriyuki Tsuchida ,&nbsp;Wu Gong ,&nbsp;Stefanus Harjo ,&nbsp;Takahito Ohmura\",\"doi\":\"10.1016/j.msea.2025.149136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The uniaxial deformation behavior of low-carbon ferritic steels with grain sizes of 0.47 μm and 1.5 μm was investigated using <em>in situ</em> neutron diffraction measurements under both tensile and compressive loading. The analysis focused on the evolution of &lt;hkl&gt; lattice (elastic) strains, originating from anisotropy in &lt;hkl&gt; elastic moduli and differences in plastic flow among grains. Such plastic strain incompatibilities produce &lt;hkl&gt; intergranular lattice strains (or stresses). The experiments revealed substantial residual &lt;hkl&gt; intergranular lattice strains following both tensile and compressive plastic deformation. Transmission electron microscopy confirmed the grain-size dependence of dislocation structures formed during plastic flow, suggesting that plastic relaxation near grain boundaries becomes increasingly constrained with grain refinement. Overall, the results demonstrate that the magnitude of residual &lt;hkl&gt; intergranular lattice strains increases as grain size decreases from several tens of micrometers down to 0.5 μm.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"946 \",\"pages\":\"Article 149136\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325013607\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013607","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用原位中子衍射法研究了晶粒尺寸为0.47 μm和1.5 μm的低碳铁素体钢在拉伸和压缩载荷作用下的单轴变形行为。分析的重点是<;hkl>;晶格(弹性)应变的演化,这源于<;hkl>;弹性模量的各向异性和晶粒间塑性流动的差异。这种塑性应变不相容产生晶间晶格应变(或应力)。实验显示,在拉伸和压缩塑性变形之后,存在大量残余的<;hkl>;晶间晶格应变。透射电镜证实了塑性流动过程中形成的位错结构对晶粒尺寸的依赖性,表明晶界附近的塑性松弛随着晶粒细化而受到越来越大的约束。结果表明,随着晶粒尺寸从几十微米减小到0.5 μm,残余的<;hkl>;晶间晶格应变的大小逐渐增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grain size dependence of intergranular lattice strain generated by plastic deformation in ferritic steel
The uniaxial deformation behavior of low-carbon ferritic steels with grain sizes of 0.47 μm and 1.5 μm was investigated using in situ neutron diffraction measurements under both tensile and compressive loading. The analysis focused on the evolution of <hkl> lattice (elastic) strains, originating from anisotropy in <hkl> elastic moduli and differences in plastic flow among grains. Such plastic strain incompatibilities produce <hkl> intergranular lattice strains (or stresses). The experiments revealed substantial residual <hkl> intergranular lattice strains following both tensile and compressive plastic deformation. Transmission electron microscopy confirmed the grain-size dependence of dislocation structures formed during plastic flow, suggesting that plastic relaxation near grain boundaries becomes increasingly constrained with grain refinement. Overall, the results demonstrate that the magnitude of residual <hkl> intergranular lattice strains increases as grain size decreases from several tens of micrometers down to 0.5 μm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信