纳米流体热管填充比与倾角协同作用的数值研究

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Gang Yang , Ruitao Zhang , Haoxuan Li , Chunhua Zhang , Gang Li , Xiaobin Gu , Alfiya I. Aminova , G. Th Guria , Nevzat Akkurt , Zhiying Gao , Qian Xu
{"title":"纳米流体热管填充比与倾角协同作用的数值研究","authors":"Gang Yang ,&nbsp;Ruitao Zhang ,&nbsp;Haoxuan Li ,&nbsp;Chunhua Zhang ,&nbsp;Gang Li ,&nbsp;Xiaobin Gu ,&nbsp;Alfiya I. Aminova ,&nbsp;G. Th Guria ,&nbsp;Nevzat Akkurt ,&nbsp;Zhiying Gao ,&nbsp;Qian Xu","doi":"10.1016/j.solmat.2025.113966","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluid-based heat pipe solar collectors represent an efficient conversion device for solar energy. The fill ratio and inclination angle synergistically influence the thermal performance of heat pipes by altering the size and path of the vapor-liquid flow region. However, the quantitative relationship governing this synergistic interaction remains unclear. This study presents a novel Computational Fluid Dynamics (CFD) numerical model tailored for nanofluid heat pipes, accurately simulating evaporation and condensation processes. The model is validated against experimental data, exhibiting a maximum deviation of 6.99 % in wall temperature. By conducting an in-depth analysis of the wall temperature, wall liquid film velocity, and thermal resistance, this study quantitatively elucidates the synergistic mechanism of the fill ratio and inclination angle on the heat pipe's thermal performance. The results demonstrate that the fill ratio and inclination angle primarily influence the thermal resistance of the heat pipe by altering the vapor-liquid flow velocity, which in turn affects the convective heat transfer intensity. The results indicate that the fill ratio exerts a more pronounced impact on the thermal resistance of the heat pipe than the inclination angle, although this effect gradually diminishes as both parameters increase. The predictive modeling has identified the optimum fill ratio and inclination angle as 73.4 % and 61.9°, respectively, resulting in a thermal resistance of R = 0.6390 <span><math><mrow><mo>±</mo><mn>0.163</mn></mrow></math></span> K/W. This represents a 47.4 % <span><math><mrow><mo>±</mo><mn>13.4</mn><mo>%</mo></mrow></math></span> reduction compared to the thermal resistance observed at a 10 % fill ratio and a 10° inclination angle.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 113966"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of synergistic interactions between fill ratio and inclination angle in nanofluid heat pipes\",\"authors\":\"Gang Yang ,&nbsp;Ruitao Zhang ,&nbsp;Haoxuan Li ,&nbsp;Chunhua Zhang ,&nbsp;Gang Li ,&nbsp;Xiaobin Gu ,&nbsp;Alfiya I. Aminova ,&nbsp;G. Th Guria ,&nbsp;Nevzat Akkurt ,&nbsp;Zhiying Gao ,&nbsp;Qian Xu\",\"doi\":\"10.1016/j.solmat.2025.113966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanofluid-based heat pipe solar collectors represent an efficient conversion device for solar energy. The fill ratio and inclination angle synergistically influence the thermal performance of heat pipes by altering the size and path of the vapor-liquid flow region. However, the quantitative relationship governing this synergistic interaction remains unclear. This study presents a novel Computational Fluid Dynamics (CFD) numerical model tailored for nanofluid heat pipes, accurately simulating evaporation and condensation processes. The model is validated against experimental data, exhibiting a maximum deviation of 6.99 % in wall temperature. By conducting an in-depth analysis of the wall temperature, wall liquid film velocity, and thermal resistance, this study quantitatively elucidates the synergistic mechanism of the fill ratio and inclination angle on the heat pipe's thermal performance. The results demonstrate that the fill ratio and inclination angle primarily influence the thermal resistance of the heat pipe by altering the vapor-liquid flow velocity, which in turn affects the convective heat transfer intensity. The results indicate that the fill ratio exerts a more pronounced impact on the thermal resistance of the heat pipe than the inclination angle, although this effect gradually diminishes as both parameters increase. The predictive modeling has identified the optimum fill ratio and inclination angle as 73.4 % and 61.9°, respectively, resulting in a thermal resistance of R = 0.6390 <span><math><mrow><mo>±</mo><mn>0.163</mn></mrow></math></span> K/W. This represents a 47.4 % <span><math><mrow><mo>±</mo><mn>13.4</mn><mo>%</mo></mrow></math></span> reduction compared to the thermal resistance observed at a 10 % fill ratio and a 10° inclination angle.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"295 \",\"pages\":\"Article 113966\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825005677\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825005677","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

基于纳米流体的热管太阳能集热器是一种高效的太阳能转换装置。填充比和倾角通过改变汽液流区的大小和路径,协同影响热管的热性能。然而,控制这种协同作用的定量关系仍不清楚。本文提出了一种新颖的纳米流体热管计算流体动力学(CFD)数值模型,精确地模拟了蒸发和冷凝过程。根据实验数据验证了模型的正确性,结果表明,壁面温度的最大偏差为6.99%。通过对管壁温度、管壁液膜速度和热阻的深入分析,定量阐明了填充比和倾角对热管热性能的协同作用机制。结果表明,填充比和倾角主要通过改变汽液流动速度来影响热管的热阻,从而影响对流换热强度。结果表明:填充比比倾角对热管热阻的影响更为显著,但随着填充比和倾角的增大,填充比对热管热阻的影响逐渐减小。预测模型确定最佳充填率为73.4%,最佳倾角为61.9°,最佳热阻R = 0.6390±0.163 K/W。与10%填充率和10°倾角下观察到的热阻相比,这代表了47.4%±13.4%的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation of synergistic interactions between fill ratio and inclination angle in nanofluid heat pipes
Nanofluid-based heat pipe solar collectors represent an efficient conversion device for solar energy. The fill ratio and inclination angle synergistically influence the thermal performance of heat pipes by altering the size and path of the vapor-liquid flow region. However, the quantitative relationship governing this synergistic interaction remains unclear. This study presents a novel Computational Fluid Dynamics (CFD) numerical model tailored for nanofluid heat pipes, accurately simulating evaporation and condensation processes. The model is validated against experimental data, exhibiting a maximum deviation of 6.99 % in wall temperature. By conducting an in-depth analysis of the wall temperature, wall liquid film velocity, and thermal resistance, this study quantitatively elucidates the synergistic mechanism of the fill ratio and inclination angle on the heat pipe's thermal performance. The results demonstrate that the fill ratio and inclination angle primarily influence the thermal resistance of the heat pipe by altering the vapor-liquid flow velocity, which in turn affects the convective heat transfer intensity. The results indicate that the fill ratio exerts a more pronounced impact on the thermal resistance of the heat pipe than the inclination angle, although this effect gradually diminishes as both parameters increase. The predictive modeling has identified the optimum fill ratio and inclination angle as 73.4 % and 61.9°, respectively, resulting in a thermal resistance of R = 0.6390 ±0.163 K/W. This represents a 47.4 % ±13.4% reduction compared to the thermal resistance observed at a 10 % fill ratio and a 10° inclination angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信