Jianping Zuo , Bo Lei , Genshui Wu , Haiyan Liu , Massimo Coli
{"title":"基于多级PB-GBM方法的初始损伤页岩力学响应及破裂行为研究","authors":"Jianping Zuo , Bo Lei , Genshui Wu , Haiyan Liu , Massimo Coli","doi":"10.1016/j.gete.2025.100738","DOIUrl":null,"url":null,"abstract":"<div><div>Research on the failure behavior of Longmaxi shale is vital for shale reservoir reconstruction. Shale inherently contains some initial micro-cracks, which significantly affect its strength and failure behavior. In this paper, a refined boundary multi-level parallel bonded grain-based model (multi-level PB-GBM) in Particle Flow Code (PFC2D) was developed, and the effect of inherent initial damage on shale strength and failure behavior was quantitatively investigated. The results showed that inherent initial damage significantly influences the failure pattern and mechanical properties of shale. The newly generated cracks of the initially damaged samples are significantly self-organized compared with those of the undamaged samples, indicating that the inherent initial damaged cracks induce the orientation and aggregation of micro-cracks. High initially damaged samples mainly demonstrate by splitting-shear coupled fracture as a result of the co-evolution of primary and secondary micro-cracks. Generally, rock strength gradually decreases as the initial damage increases. When the inherent initial damage within the sample is low, the rock strength is greatly influenced by confining pressure, whereas when the initial damage is high enough, the initial damage contributes more to the rock strength.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"44 ","pages":"Article 100738"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on mechanical response and fracture behavior of initially damaged shale based on multi-level PB-GBM method\",\"authors\":\"Jianping Zuo , Bo Lei , Genshui Wu , Haiyan Liu , Massimo Coli\",\"doi\":\"10.1016/j.gete.2025.100738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Research on the failure behavior of Longmaxi shale is vital for shale reservoir reconstruction. Shale inherently contains some initial micro-cracks, which significantly affect its strength and failure behavior. In this paper, a refined boundary multi-level parallel bonded grain-based model (multi-level PB-GBM) in Particle Flow Code (PFC2D) was developed, and the effect of inherent initial damage on shale strength and failure behavior was quantitatively investigated. The results showed that inherent initial damage significantly influences the failure pattern and mechanical properties of shale. The newly generated cracks of the initially damaged samples are significantly self-organized compared with those of the undamaged samples, indicating that the inherent initial damaged cracks induce the orientation and aggregation of micro-cracks. High initially damaged samples mainly demonstrate by splitting-shear coupled fracture as a result of the co-evolution of primary and secondary micro-cracks. Generally, rock strength gradually decreases as the initial damage increases. When the inherent initial damage within the sample is low, the rock strength is greatly influenced by confining pressure, whereas when the initial damage is high enough, the initial damage contributes more to the rock strength.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"44 \",\"pages\":\"Article 100738\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825001030\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825001030","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation on mechanical response and fracture behavior of initially damaged shale based on multi-level PB-GBM method
Research on the failure behavior of Longmaxi shale is vital for shale reservoir reconstruction. Shale inherently contains some initial micro-cracks, which significantly affect its strength and failure behavior. In this paper, a refined boundary multi-level parallel bonded grain-based model (multi-level PB-GBM) in Particle Flow Code (PFC2D) was developed, and the effect of inherent initial damage on shale strength and failure behavior was quantitatively investigated. The results showed that inherent initial damage significantly influences the failure pattern and mechanical properties of shale. The newly generated cracks of the initially damaged samples are significantly self-organized compared with those of the undamaged samples, indicating that the inherent initial damaged cracks induce the orientation and aggregation of micro-cracks. High initially damaged samples mainly demonstrate by splitting-shear coupled fracture as a result of the co-evolution of primary and secondary micro-cracks. Generally, rock strength gradually decreases as the initial damage increases. When the inherent initial damage within the sample is low, the rock strength is greatly influenced by confining pressure, whereas when the initial damage is high enough, the initial damage contributes more to the rock strength.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.