{"title":"具有皮摩软化硬化特性的能源桩热力学分析方法","authors":"Huaibo Song , Huafu Pei , Hao Wang","doi":"10.1016/j.gete.2025.100744","DOIUrl":null,"url":null,"abstract":"<div><div>Various approaches have been proposed to analyze the thermomechanical behavior of individual energy piles. Although these approaches can account for pile-soil interactions, there is a lack of approaches for continuously describing the full nonlinear range of the load-transfer curve for individual energy piles under thermomechanical loading, including both skin friction softening and the hardening behavior. Therefore, this study developed an analysis method for individual energy piles by considering skin friction softening and hardening behaviors. The developed approach was verified by comparing the simulation results with those of three well-documented field tests, alongside laboratory and centrifuge model tests. The simulation results show a maximum percentage error between the simulation results and the field measurement results is 8.8 %, which is much smaller than that of other methods, indicating a relatively high degree of consistency between the simulation and the actual situation. Besides,the results suggest that the proposed method can capture the full nonlinear range of the load-transfer curve and essential aspects of the pile in terms of the stress and displacement induced by the thermomechanical operation. Finally, a parametric analysis was conducted to study the effects of the model parameters on the energy pile thermomechanical performance. Results show that increasing the dimensionless parameter changes the pile axial thermal stress and displacement oppositely; increasing the residual ratio boosts axial thermal stress, reduces displacements and stress, and moves the neutral point (NP) towards the pile head.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"44 ","pages":"Article 100744"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermomechanical analysis method for energy piles with skin friction softening and hardening behavior\",\"authors\":\"Huaibo Song , Huafu Pei , Hao Wang\",\"doi\":\"10.1016/j.gete.2025.100744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Various approaches have been proposed to analyze the thermomechanical behavior of individual energy piles. Although these approaches can account for pile-soil interactions, there is a lack of approaches for continuously describing the full nonlinear range of the load-transfer curve for individual energy piles under thermomechanical loading, including both skin friction softening and the hardening behavior. Therefore, this study developed an analysis method for individual energy piles by considering skin friction softening and hardening behaviors. The developed approach was verified by comparing the simulation results with those of three well-documented field tests, alongside laboratory and centrifuge model tests. The simulation results show a maximum percentage error between the simulation results and the field measurement results is 8.8 %, which is much smaller than that of other methods, indicating a relatively high degree of consistency between the simulation and the actual situation. Besides,the results suggest that the proposed method can capture the full nonlinear range of the load-transfer curve and essential aspects of the pile in terms of the stress and displacement induced by the thermomechanical operation. Finally, a parametric analysis was conducted to study the effects of the model parameters on the energy pile thermomechanical performance. Results show that increasing the dimensionless parameter changes the pile axial thermal stress and displacement oppositely; increasing the residual ratio boosts axial thermal stress, reduces displacements and stress, and moves the neutral point (NP) towards the pile head.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"44 \",\"pages\":\"Article 100744\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825001091\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825001091","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermomechanical analysis method for energy piles with skin friction softening and hardening behavior
Various approaches have been proposed to analyze the thermomechanical behavior of individual energy piles. Although these approaches can account for pile-soil interactions, there is a lack of approaches for continuously describing the full nonlinear range of the load-transfer curve for individual energy piles under thermomechanical loading, including both skin friction softening and the hardening behavior. Therefore, this study developed an analysis method for individual energy piles by considering skin friction softening and hardening behaviors. The developed approach was verified by comparing the simulation results with those of three well-documented field tests, alongside laboratory and centrifuge model tests. The simulation results show a maximum percentage error between the simulation results and the field measurement results is 8.8 %, which is much smaller than that of other methods, indicating a relatively high degree of consistency between the simulation and the actual situation. Besides,the results suggest that the proposed method can capture the full nonlinear range of the load-transfer curve and essential aspects of the pile in terms of the stress and displacement induced by the thermomechanical operation. Finally, a parametric analysis was conducted to study the effects of the model parameters on the energy pile thermomechanical performance. Results show that increasing the dimensionless parameter changes the pile axial thermal stress and displacement oppositely; increasing the residual ratio boosts axial thermal stress, reduces displacements and stress, and moves the neutral point (NP) towards the pile head.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.