{"title":"威利斯顿盆地Deadwood组岩石物理与裂缝特征:对地热资源开发的启示","authors":"Moones Alamooti, Shane Namie","doi":"10.1016/j.gete.2025.100737","DOIUrl":null,"url":null,"abstract":"<div><div>Sedimentary basin geothermal systems face critical characterization challenges from complex reservoir heterogeneity that traditional assessment methods inadequately address. This study develops an integrated petrophysical-structural framework for the Deadwood Formation in North Dakota's Williston Basin using advanced rock physics modeling and statistical fracture analysis. We employed Differential Effective Medium theory for bimodal pore structures (macropores 10–100 micrometers, micropores <1 micrometer), Kuster-Toksöz analysis for fracture-induced anisotropy with aspect ratios 0.001–1.0, and Gassmann fluid substitution with empirically constrained parameters. Formation Micro-Imager logs at 5 millimeter resolution enabled statistical characterization of 847 fractures across 450 feet, with uncertainty quantification through Monte Carlo simulation. Results demonstrate exceptional geothermal potential with a validated gradient of 34.6°C/km, significantly exceeding typical sedimentary basin values of 25–30°C/km, achieving 160–162°C at economically viable depths of 3.0–3.1 kilometers. Fracture networks follow log-normal distributions with volumetric intensities of 0.07–2.82 fractures/ft<sup>3</sup> and a coefficient of variation of 79 %, requiring stochastic modeling approaches. Rock physics modeling successfully discriminates reservoir zones with correlation coefficients exceeding 0.87, identifying Members B and A as optimal targets. Economic analysis demonstrates commercial viability with levelized electricity costs of 8.7 cents per kilowatt-hour (confidence interval: 6.1–12.4), competitive with renewable alternatives. The superior depth-to-temperature ratio of 18.9–19.4 m per degree Celsius provides 25–45 % cost advantages over typical sedimentary prospects. Parameter bounds were constrained by core and log data (φ = 0.08 – 0.18; K<sub>s</sub> = 37 – 43 GPa; K-f = 0.02 – 2.3 GPa across steam-brine scenarios), with dry-frame moduli from DEM directly feeding Gassman substitution. This integrated framework advances sedimentary geothermal assessment while establishing replicable protocols for global application, contributing to sustainable energy transition goals.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"44 ","pages":"Article 100737"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rock physics and fracture characterization of the Deadwood Formation, Williston Basin: Insights into geothermal resource development\",\"authors\":\"Moones Alamooti, Shane Namie\",\"doi\":\"10.1016/j.gete.2025.100737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sedimentary basin geothermal systems face critical characterization challenges from complex reservoir heterogeneity that traditional assessment methods inadequately address. This study develops an integrated petrophysical-structural framework for the Deadwood Formation in North Dakota's Williston Basin using advanced rock physics modeling and statistical fracture analysis. We employed Differential Effective Medium theory for bimodal pore structures (macropores 10–100 micrometers, micropores <1 micrometer), Kuster-Toksöz analysis for fracture-induced anisotropy with aspect ratios 0.001–1.0, and Gassmann fluid substitution with empirically constrained parameters. Formation Micro-Imager logs at 5 millimeter resolution enabled statistical characterization of 847 fractures across 450 feet, with uncertainty quantification through Monte Carlo simulation. Results demonstrate exceptional geothermal potential with a validated gradient of 34.6°C/km, significantly exceeding typical sedimentary basin values of 25–30°C/km, achieving 160–162°C at economically viable depths of 3.0–3.1 kilometers. Fracture networks follow log-normal distributions with volumetric intensities of 0.07–2.82 fractures/ft<sup>3</sup> and a coefficient of variation of 79 %, requiring stochastic modeling approaches. Rock physics modeling successfully discriminates reservoir zones with correlation coefficients exceeding 0.87, identifying Members B and A as optimal targets. Economic analysis demonstrates commercial viability with levelized electricity costs of 8.7 cents per kilowatt-hour (confidence interval: 6.1–12.4), competitive with renewable alternatives. The superior depth-to-temperature ratio of 18.9–19.4 m per degree Celsius provides 25–45 % cost advantages over typical sedimentary prospects. Parameter bounds were constrained by core and log data (φ = 0.08 – 0.18; K<sub>s</sub> = 37 – 43 GPa; K-f = 0.02 – 2.3 GPa across steam-brine scenarios), with dry-frame moduli from DEM directly feeding Gassman substitution. This integrated framework advances sedimentary geothermal assessment while establishing replicable protocols for global application, contributing to sustainable energy transition goals.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"44 \",\"pages\":\"Article 100737\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825001029\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825001029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Rock physics and fracture characterization of the Deadwood Formation, Williston Basin: Insights into geothermal resource development
Sedimentary basin geothermal systems face critical characterization challenges from complex reservoir heterogeneity that traditional assessment methods inadequately address. This study develops an integrated petrophysical-structural framework for the Deadwood Formation in North Dakota's Williston Basin using advanced rock physics modeling and statistical fracture analysis. We employed Differential Effective Medium theory for bimodal pore structures (macropores 10–100 micrometers, micropores <1 micrometer), Kuster-Toksöz analysis for fracture-induced anisotropy with aspect ratios 0.001–1.0, and Gassmann fluid substitution with empirically constrained parameters. Formation Micro-Imager logs at 5 millimeter resolution enabled statistical characterization of 847 fractures across 450 feet, with uncertainty quantification through Monte Carlo simulation. Results demonstrate exceptional geothermal potential with a validated gradient of 34.6°C/km, significantly exceeding typical sedimentary basin values of 25–30°C/km, achieving 160–162°C at economically viable depths of 3.0–3.1 kilometers. Fracture networks follow log-normal distributions with volumetric intensities of 0.07–2.82 fractures/ft3 and a coefficient of variation of 79 %, requiring stochastic modeling approaches. Rock physics modeling successfully discriminates reservoir zones with correlation coefficients exceeding 0.87, identifying Members B and A as optimal targets. Economic analysis demonstrates commercial viability with levelized electricity costs of 8.7 cents per kilowatt-hour (confidence interval: 6.1–12.4), competitive with renewable alternatives. The superior depth-to-temperature ratio of 18.9–19.4 m per degree Celsius provides 25–45 % cost advantages over typical sedimentary prospects. Parameter bounds were constrained by core and log data (φ = 0.08 – 0.18; Ks = 37 – 43 GPa; K-f = 0.02 – 2.3 GPa across steam-brine scenarios), with dry-frame moduli from DEM directly feeding Gassman substitution. This integrated framework advances sedimentary geothermal assessment while establishing replicable protocols for global application, contributing to sustainable energy transition goals.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.