Jiafeng Wu , Zhenlu Cui , Xiaoliang Han , Ruixin Wang , Zhiwei Chen , Qi Liu , Chaoyu Xie , Jianhong Gong , Chongde Cao , Hui Wang , Rie Y. Umetsu , Kaikai Song , Ran Li
{"title":"l12增强fcc型多主元素合金力学性能的析出相组织策略控制和超细晶界工程","authors":"Jiafeng Wu , Zhenlu Cui , Xiaoliang Han , Ruixin Wang , Zhiwei Chen , Qi Liu , Chaoyu Xie , Jianhong Gong , Chongde Cao , Hui Wang , Rie Y. Umetsu , Kaikai Song , Ran Li","doi":"10.1016/j.msea.2025.149161","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-principal element alloys (MPEAs) offer exceptional mechanical properties for structural applications, yet their microstructural complexity poses challenges in optimizing performance. This study investigates the impact of initial microstructures—homogenized equiaxed grains (EG) with dot-like L1<sub>2</sub> nanoprecipitates versus as-cast columnar grains (CG) with rod-like L1<sub>2</sub> nanoprecipitates—on the mechanical behavior of Ni<sub>40</sub>Co<sub>35</sub>Cr<sub>15</sub>Al<sub>5</sub>Ti<sub>5</sub> MPEAs under identical thermomechanical processing. The processed EG samples develop a bimodal grain structure, comprising ultrafine recrystallized and coarse unrecrystallized grains. Detailed analysis reveals that coherent L1<sub>2</sub> nanoprecipitates predominantly form within unrecrystallized regions, while recrystallized grains contain both continuous and discontinuous L1<sub>2</sub> nanoprecipitates, alongside submicron semi-coherent L1<sub>2</sub> particles at grain boundaries (GBs). Particularly, Lamellar L1<sub>2</sub> precipitates in the recrystallized-unrecrystallized transition zone initiate microcracks, compromising strength-ductility synergy. Conversely, the processed CG samples exhibit a uniform ultrafine-grained matrix with comparable L1<sub>2</sub> precipitation but spatially modulated distributions, enhancing plastic deformation through stacking faults, Lomer-Cottrell locks, and distorted 9R structures near annealing twins. Submicron L1<sub>2</sub> particles at GBs impede crack propagation, resulting in superior mechanical properties: an ultimate tensile strength of ∼1833 MPa and a total elongation of ∼14.8 %. This study reveals the strategic control of initial microstructures and thermomechanical processing to optimize grain refinement and L1<sub>2</sub> phase precipitation, advancing the development of high-performance structural materials.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149161"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic control of precipitate architecture and ultrafine grain-boundary engineering for enhanced mechanical performance in L12-strengthened FCC-type multi-principal element alloys\",\"authors\":\"Jiafeng Wu , Zhenlu Cui , Xiaoliang Han , Ruixin Wang , Zhiwei Chen , Qi Liu , Chaoyu Xie , Jianhong Gong , Chongde Cao , Hui Wang , Rie Y. Umetsu , Kaikai Song , Ran Li\",\"doi\":\"10.1016/j.msea.2025.149161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-principal element alloys (MPEAs) offer exceptional mechanical properties for structural applications, yet their microstructural complexity poses challenges in optimizing performance. This study investigates the impact of initial microstructures—homogenized equiaxed grains (EG) with dot-like L1<sub>2</sub> nanoprecipitates versus as-cast columnar grains (CG) with rod-like L1<sub>2</sub> nanoprecipitates—on the mechanical behavior of Ni<sub>40</sub>Co<sub>35</sub>Cr<sub>15</sub>Al<sub>5</sub>Ti<sub>5</sub> MPEAs under identical thermomechanical processing. The processed EG samples develop a bimodal grain structure, comprising ultrafine recrystallized and coarse unrecrystallized grains. Detailed analysis reveals that coherent L1<sub>2</sub> nanoprecipitates predominantly form within unrecrystallized regions, while recrystallized grains contain both continuous and discontinuous L1<sub>2</sub> nanoprecipitates, alongside submicron semi-coherent L1<sub>2</sub> particles at grain boundaries (GBs). Particularly, Lamellar L1<sub>2</sub> precipitates in the recrystallized-unrecrystallized transition zone initiate microcracks, compromising strength-ductility synergy. Conversely, the processed CG samples exhibit a uniform ultrafine-grained matrix with comparable L1<sub>2</sub> precipitation but spatially modulated distributions, enhancing plastic deformation through stacking faults, Lomer-Cottrell locks, and distorted 9R structures near annealing twins. Submicron L1<sub>2</sub> particles at GBs impede crack propagation, resulting in superior mechanical properties: an ultimate tensile strength of ∼1833 MPa and a total elongation of ∼14.8 %. This study reveals the strategic control of initial microstructures and thermomechanical processing to optimize grain refinement and L1<sub>2</sub> phase precipitation, advancing the development of high-performance structural materials.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"946 \",\"pages\":\"Article 149161\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325013851\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013851","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Strategic control of precipitate architecture and ultrafine grain-boundary engineering for enhanced mechanical performance in L12-strengthened FCC-type multi-principal element alloys
Multi-principal element alloys (MPEAs) offer exceptional mechanical properties for structural applications, yet their microstructural complexity poses challenges in optimizing performance. This study investigates the impact of initial microstructures—homogenized equiaxed grains (EG) with dot-like L12 nanoprecipitates versus as-cast columnar grains (CG) with rod-like L12 nanoprecipitates—on the mechanical behavior of Ni40Co35Cr15Al5Ti5 MPEAs under identical thermomechanical processing. The processed EG samples develop a bimodal grain structure, comprising ultrafine recrystallized and coarse unrecrystallized grains. Detailed analysis reveals that coherent L12 nanoprecipitates predominantly form within unrecrystallized regions, while recrystallized grains contain both continuous and discontinuous L12 nanoprecipitates, alongside submicron semi-coherent L12 particles at grain boundaries (GBs). Particularly, Lamellar L12 precipitates in the recrystallized-unrecrystallized transition zone initiate microcracks, compromising strength-ductility synergy. Conversely, the processed CG samples exhibit a uniform ultrafine-grained matrix with comparable L12 precipitation but spatially modulated distributions, enhancing plastic deformation through stacking faults, Lomer-Cottrell locks, and distorted 9R structures near annealing twins. Submicron L12 particles at GBs impede crack propagation, resulting in superior mechanical properties: an ultimate tensile strength of ∼1833 MPa and a total elongation of ∼14.8 %. This study reveals the strategic control of initial microstructures and thermomechanical processing to optimize grain refinement and L12 phase precipitation, advancing the development of high-performance structural materials.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.