FGH4096高温合金铸锻复合制造新方法:以低成本实现高性能

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kai Chang , Yi Tan , Chenxi Ma , Rusheng Bai , Pengting Li , Gengyi Dong , Chi Zhang , Yinong Wang
{"title":"FGH4096高温合金铸锻复合制造新方法:以低成本实现高性能","authors":"Kai Chang ,&nbsp;Yi Tan ,&nbsp;Chenxi Ma ,&nbsp;Rusheng Bai ,&nbsp;Pengting Li ,&nbsp;Gengyi Dong ,&nbsp;Chi Zhang ,&nbsp;Yinong Wang","doi":"10.1016/j.msea.2025.149107","DOIUrl":null,"url":null,"abstract":"<div><div>Despite their superior high-temperature capabilities, powder metallurgy (PM) superalloys face critical limitations in industrial scalability due to intricate processing routes, prohibitive costs, and inherent susceptibility to contamination by inclusions. To overcome these challenges, this study pioneers a hybrid manufacturing strategy integrating electron beam directional solidification (EBDS) with isothermal forging to fabricate cast-forged FGH4096 superalloy, achieving unprecedented cost-effectiveness, process efficiency, and mechanical performance. The EBDS technique produces ⟨001⟩-textured columnar grains (0.5–1 mm width), while subsequent isothermal forging and heat treatment induce more than 82 % dynamic recrystallization, eliminating casting defects and refining γ′ precipitates to a bimodal distribution (40–65 nm secondary γ′). Compared to conventional PM counterparts, the developed alloy exhibits a 10 % higher yield strength (1038 MPa at 750 °C), attributed to its hierarchical microstructural features, including high-density nanoscale twins (2.2 nm spacing) and stacking fault (SF) networks. These findings provide a better understanding of the complex interactions between γ′ phase, microtwins (MTs), SF and high-temperature properties, offering insights into improving the short-process, low-cost preparation of cast &amp; wrought FGH4096 alloy.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149107"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel cast & wrought hybrid manufacturing of FGH4096 superalloy: Achieving high performance with reduced production cost\",\"authors\":\"Kai Chang ,&nbsp;Yi Tan ,&nbsp;Chenxi Ma ,&nbsp;Rusheng Bai ,&nbsp;Pengting Li ,&nbsp;Gengyi Dong ,&nbsp;Chi Zhang ,&nbsp;Yinong Wang\",\"doi\":\"10.1016/j.msea.2025.149107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite their superior high-temperature capabilities, powder metallurgy (PM) superalloys face critical limitations in industrial scalability due to intricate processing routes, prohibitive costs, and inherent susceptibility to contamination by inclusions. To overcome these challenges, this study pioneers a hybrid manufacturing strategy integrating electron beam directional solidification (EBDS) with isothermal forging to fabricate cast-forged FGH4096 superalloy, achieving unprecedented cost-effectiveness, process efficiency, and mechanical performance. The EBDS technique produces ⟨001⟩-textured columnar grains (0.5–1 mm width), while subsequent isothermal forging and heat treatment induce more than 82 % dynamic recrystallization, eliminating casting defects and refining γ′ precipitates to a bimodal distribution (40–65 nm secondary γ′). Compared to conventional PM counterparts, the developed alloy exhibits a 10 % higher yield strength (1038 MPa at 750 °C), attributed to its hierarchical microstructural features, including high-density nanoscale twins (2.2 nm spacing) and stacking fault (SF) networks. These findings provide a better understanding of the complex interactions between γ′ phase, microtwins (MTs), SF and high-temperature properties, offering insights into improving the short-process, low-cost preparation of cast &amp; wrought FGH4096 alloy.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"946 \",\"pages\":\"Article 149107\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325013310\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013310","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管粉末冶金(PM)高温合金具有优异的高温性能,但由于复杂的加工路线、高昂的成本以及对夹杂物污染的固有敏感性,粉末冶金(PM)高温合金在工业可扩展性方面面临着严重的限制。为了克服这些挑战,本研究开创了一种混合制造策略,将电子束定向凝固(EBDS)与等温锻造相结合,制造铸锻FGH4096高温合金,实现了前所未有的成本效益、工艺效率和机械性能。EBDS技术产生⟨001⟩织构的柱状晶粒(0.5-1 mm宽度),而随后的等温锻造和热处理诱导超过82%的动态再结晶,消除铸造缺陷并将γ ‘析出物细化到双峰分布(40-65 nm次级γ ’)。与传统的PM相比,该合金的屈服强度提高了10%(750°C时为1038 MPa),这归功于其分层的微观结构特征,包括高密度纳米孪晶(2.2 nm间距)和层错(SF)网络。这些发现有助于更好地理解γ′相、微孪晶(MTs)、SF和高温性能之间的复杂相互作用,为改进短工艺、低成本制备铸造和变形FGH4096合金提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel cast & wrought hybrid manufacturing of FGH4096 superalloy: Achieving high performance with reduced production cost
Despite their superior high-temperature capabilities, powder metallurgy (PM) superalloys face critical limitations in industrial scalability due to intricate processing routes, prohibitive costs, and inherent susceptibility to contamination by inclusions. To overcome these challenges, this study pioneers a hybrid manufacturing strategy integrating electron beam directional solidification (EBDS) with isothermal forging to fabricate cast-forged FGH4096 superalloy, achieving unprecedented cost-effectiveness, process efficiency, and mechanical performance. The EBDS technique produces ⟨001⟩-textured columnar grains (0.5–1 mm width), while subsequent isothermal forging and heat treatment induce more than 82 % dynamic recrystallization, eliminating casting defects and refining γ′ precipitates to a bimodal distribution (40–65 nm secondary γ′). Compared to conventional PM counterparts, the developed alloy exhibits a 10 % higher yield strength (1038 MPa at 750 °C), attributed to its hierarchical microstructural features, including high-density nanoscale twins (2.2 nm spacing) and stacking fault (SF) networks. These findings provide a better understanding of the complex interactions between γ′ phase, microtwins (MTs), SF and high-temperature properties, offering insights into improving the short-process, low-cost preparation of cast & wrought FGH4096 alloy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信