Wenping Cao , Jiayi Zhao , Xinyan Xiong , Zhuang Wang , Li Tan , Jie Sheng , W.L. Li
{"title":"通过多元素b位取代制备(Na0.5Bi0.5)TiO3-SrTiO3铁电薄膜","authors":"Wenping Cao , Jiayi Zhao , Xinyan Xiong , Zhuang Wang , Li Tan , Jie Sheng , W.L. Li","doi":"10.1016/j.jssc.2025.125662","DOIUrl":null,"url":null,"abstract":"<div><div>Large discrepancy between maximum polarization and remanent polarization Δ<em>P</em> (<em>P</em><sub>max</sub>-<em>P</em><sub>r</sub>) and high breakdown strength (<em>E</em><sub>b</sub>) are the two decisive parameters to achieve outstanding energy storage performance in dielectric capacitors. However, high voltage (3–6 MV cm<sup>−1</sup>) often generates heat generation and unexpected insulation failures, greatly deteriorating both device stability and service lifetime. Herein, we propose an approach on boosting up Δ<em>P</em> of (Na<sub>0</sub><sub>·</sub><sub>5</sub>Bi<sub>0.5</sub>)<sub>0.65</sub>Sr<sub>0</sub><sub>·</sub><sub>35</sub>Ti<sub>0.99-<em>x</em></sub>Mn<sub>0.01</sub>Nb<sub><em>x</em></sub>O<sub>3</sub>-SrTiO<sub>3</sub> (NBSTMn-<em>x</em>Nb) films to realize high energy storage density (<em>W</em><sub>rec</sub>) at low electric field by introducing <span><math><mrow><mo>[</mo><mrow><msubsup><mtext>Mn</mtext><mtext>Ti</mtext><mo>″</mo></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>o</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow><mo>]</mo></mrow></math></span> defect dipoles and Mn<sup>3+</sup>-Nb<sup>5+</sup> ionic pairs. The synergistic effect of <span><math><mrow><mo>[</mo><mrow><msubsup><mtext>Mn</mtext><mtext>Ti</mtext><mo>″</mo></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>o</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow><mo>]</mo></mrow></math></span> defect dipoles enabled reversible domain switching and Mn<sup>3+</sup>-Nb<sup>5+</sup> ionic pairs caused chemical pressure and coupled the inherent ferroelectric instability, yielding a huge Δ<em>P</em> of 78.7 μC/cm<sup>2</sup> at 1790 kV/cm. Consequently, an energy density of 48.03 J/cm<sup>3</sup> with an efficiency of 67.7 % at a low electric field of 1790 kV/cm was realized in NBSTMn-<em>x</em>Nb (<em>x</em> = 1.0 %) film. Besides, the NBSTMn-1.0 %Nb film also exhibits excellent stability in frequency (0.2–10 kHz) and temperature (20–200 C) under 1000 kV/cm. These findings present an opportunity to develop high energy density thin film capacitors at low electric field strength though introducing composite dipoles.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"353 ","pages":"Article 125662"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High energy-storage density under low electric field in (Na0.5Bi0.5)TiO3-SrTiO3 ferroelectric thin films through multi-element B-site substitutions\",\"authors\":\"Wenping Cao , Jiayi Zhao , Xinyan Xiong , Zhuang Wang , Li Tan , Jie Sheng , W.L. Li\",\"doi\":\"10.1016/j.jssc.2025.125662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large discrepancy between maximum polarization and remanent polarization Δ<em>P</em> (<em>P</em><sub>max</sub>-<em>P</em><sub>r</sub>) and high breakdown strength (<em>E</em><sub>b</sub>) are the two decisive parameters to achieve outstanding energy storage performance in dielectric capacitors. However, high voltage (3–6 MV cm<sup>−1</sup>) often generates heat generation and unexpected insulation failures, greatly deteriorating both device stability and service lifetime. Herein, we propose an approach on boosting up Δ<em>P</em> of (Na<sub>0</sub><sub>·</sub><sub>5</sub>Bi<sub>0.5</sub>)<sub>0.65</sub>Sr<sub>0</sub><sub>·</sub><sub>35</sub>Ti<sub>0.99-<em>x</em></sub>Mn<sub>0.01</sub>Nb<sub><em>x</em></sub>O<sub>3</sub>-SrTiO<sub>3</sub> (NBSTMn-<em>x</em>Nb) films to realize high energy storage density (<em>W</em><sub>rec</sub>) at low electric field by introducing <span><math><mrow><mo>[</mo><mrow><msubsup><mtext>Mn</mtext><mtext>Ti</mtext><mo>″</mo></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>o</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow><mo>]</mo></mrow></math></span> defect dipoles and Mn<sup>3+</sup>-Nb<sup>5+</sup> ionic pairs. The synergistic effect of <span><math><mrow><mo>[</mo><mrow><msubsup><mtext>Mn</mtext><mtext>Ti</mtext><mo>″</mo></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>o</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow><mo>]</mo></mrow></math></span> defect dipoles enabled reversible domain switching and Mn<sup>3+</sup>-Nb<sup>5+</sup> ionic pairs caused chemical pressure and coupled the inherent ferroelectric instability, yielding a huge Δ<em>P</em> of 78.7 μC/cm<sup>2</sup> at 1790 kV/cm. Consequently, an energy density of 48.03 J/cm<sup>3</sup> with an efficiency of 67.7 % at a low electric field of 1790 kV/cm was realized in NBSTMn-<em>x</em>Nb (<em>x</em> = 1.0 %) film. Besides, the NBSTMn-1.0 %Nb film also exhibits excellent stability in frequency (0.2–10 kHz) and temperature (20–200 C) under 1000 kV/cm. These findings present an opportunity to develop high energy density thin film capacitors at low electric field strength though introducing composite dipoles.</div></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"353 \",\"pages\":\"Article 125662\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459625004864\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625004864","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
High energy-storage density under low electric field in (Na0.5Bi0.5)TiO3-SrTiO3 ferroelectric thin films through multi-element B-site substitutions
Large discrepancy between maximum polarization and remanent polarization ΔP (Pmax-Pr) and high breakdown strength (Eb) are the two decisive parameters to achieve outstanding energy storage performance in dielectric capacitors. However, high voltage (3–6 MV cm−1) often generates heat generation and unexpected insulation failures, greatly deteriorating both device stability and service lifetime. Herein, we propose an approach on boosting up ΔP of (Na0·5Bi0.5)0.65Sr0·35Ti0.99-xMn0.01NbxO3-SrTiO3 (NBSTMn-xNb) films to realize high energy storage density (Wrec) at low electric field by introducing defect dipoles and Mn3+-Nb5+ ionic pairs. The synergistic effect of defect dipoles enabled reversible domain switching and Mn3+-Nb5+ ionic pairs caused chemical pressure and coupled the inherent ferroelectric instability, yielding a huge ΔP of 78.7 μC/cm2 at 1790 kV/cm. Consequently, an energy density of 48.03 J/cm3 with an efficiency of 67.7 % at a low electric field of 1790 kV/cm was realized in NBSTMn-xNb (x = 1.0 %) film. Besides, the NBSTMn-1.0 %Nb film also exhibits excellent stability in frequency (0.2–10 kHz) and temperature (20–200 C) under 1000 kV/cm. These findings present an opportunity to develop high energy density thin film capacitors at low electric field strength though introducing composite dipoles.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.