Fokker-Planck概率的变分超对称方法和Gram-Schmidt过程

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
João Vitor Santos Perles , Hugo de Oliveira Batael , Elso Drigo Filho
{"title":"Fokker-Planck概率的变分超对称方法和Gram-Schmidt过程","authors":"João Vitor Santos Perles ,&nbsp;Hugo de Oliveira Batael ,&nbsp;Elso Drigo Filho","doi":"10.1016/j.physa.2025.130952","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an alternative method for solving eigenvalue equations is investigated, with a specific application to the Schrödinger-type Fokker–Planck equation. This method is based on combined eigenfunctions through the Gram–Schmidt orthogonalization process, coupled with the well-formalized factorization technique in supersymmetric quantum mechanics. Eigenvalues are obtained via the variational method, using numerical computation. The aim is to obtain solutions for two polynomial potentials of the form <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>6</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>4</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>5</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, in order to obtain the probability distributions at different times <span><math><mi>t</mi></math></span> and initial conditions represented by <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The results for the symmetric potential <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are compared with values found in the literature. For the asymmetric potential <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, the solution is compared only with numerical results, also demonstrating a low margin of error. In both cases, the proposed technique generates probability distributions that respect the typical behavior of the Fokker–Planck equation, with percentage errors below 0.5% compared to reference methods.</div><div>The study demonstrates that the approach based on Gram–Schmidt orthogonalization and the variational method is an effective and alternative tool for solving the Fokker–Planck equation in systems described by polynomial potentials, reliably reproducing results for both ground and excited states.</div><div>As a possible application, the method is employed to investigate the folding dynamics of the protein <span><math><mrow><mi>C</mi><mi>I</mi><mn>2</mn></mrow></math></span>, treating folding as a diffusive process governed by the Fokker–Planck equation. A bistable polynomial potential of the form <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, obtained from computational simulations of the thermodynamic free energy curve, is employed to model the energy profile of the protein. This methodology enables the analysis of the time evolution of the probability distribution under different initial conditions.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"678 ","pages":"Article 130952"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational supersymmetric approach and Gram–Schmidt process for evaluating Fokker–Planck probabilities\",\"authors\":\"João Vitor Santos Perles ,&nbsp;Hugo de Oliveira Batael ,&nbsp;Elso Drigo Filho\",\"doi\":\"10.1016/j.physa.2025.130952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, an alternative method for solving eigenvalue equations is investigated, with a specific application to the Schrödinger-type Fokker–Planck equation. This method is based on combined eigenfunctions through the Gram–Schmidt orthogonalization process, coupled with the well-formalized factorization technique in supersymmetric quantum mechanics. Eigenvalues are obtained via the variational method, using numerical computation. The aim is to obtain solutions for two polynomial potentials of the form <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>6</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>4</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>5</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, in order to obtain the probability distributions at different times <span><math><mi>t</mi></math></span> and initial conditions represented by <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The results for the symmetric potential <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are compared with values found in the literature. For the asymmetric potential <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, the solution is compared only with numerical results, also demonstrating a low margin of error. In both cases, the proposed technique generates probability distributions that respect the typical behavior of the Fokker–Planck equation, with percentage errors below 0.5% compared to reference methods.</div><div>The study demonstrates that the approach based on Gram–Schmidt orthogonalization and the variational method is an effective and alternative tool for solving the Fokker–Planck equation in systems described by polynomial potentials, reliably reproducing results for both ground and excited states.</div><div>As a possible application, the method is employed to investigate the folding dynamics of the protein <span><math><mrow><mi>C</mi><mi>I</mi><mn>2</mn></mrow></math></span>, treating folding as a diffusive process governed by the Fokker–Planck equation. A bistable polynomial potential of the form <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, obtained from computational simulations of the thermodynamic free energy curve, is employed to model the energy profile of the protein. This methodology enables the analysis of the time evolution of the probability distribution under different initial conditions.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"678 \",\"pages\":\"Article 130952\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125006041\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125006041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,研究了求解特征值方程的一种替代方法,并具体应用于Schrödinger-type福克-普朗克方程。该方法基于Gram-Schmidt正交过程中的组合特征函数,并结合超对称量子力学中的良好形式化分解技术。通过变分方法,利用数值计算得到特征值。目的是求出形式为V1(x)=x66−x44和V2(x)=x44−x35−x22的两个多项式势的解,从而得到不同时刻t的概率分布和用x0表示的初始条件。将对称势V1(x)的计算结果与文献中发现的值进行了比较。对于不对称电位V2(x),该解仅与数值结果进行了比较,也证明了低误差范围。在这两种情况下,所提出的技术生成的概率分布都尊重Fokker-Planck方程的典型行为,与参考方法相比,百分比误差低于0.5%。研究表明,基于Gram-Schmidt正交化和变分方法的方法是在多项式势描述的系统中求解Fokker-Planck方程的有效替代工具,可靠地再现了基态和激发态的结果。作为一种可能的应用,该方法被用于研究蛋白质CI2的折叠动力学,将折叠视为由Fokker-Planck方程控制的扩散过程。利用热力学自由能曲线计算模拟得到的V(x)=a0x4+b0x3+c0x2+d0x+g0形式的双稳多项式势来模拟蛋白质的能量分布。该方法可以分析不同初始条件下概率分布的时间演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational supersymmetric approach and Gram–Schmidt process for evaluating Fokker–Planck probabilities
In this work, an alternative method for solving eigenvalue equations is investigated, with a specific application to the Schrödinger-type Fokker–Planck equation. This method is based on combined eigenfunctions through the Gram–Schmidt orthogonalization process, coupled with the well-formalized factorization technique in supersymmetric quantum mechanics. Eigenvalues are obtained via the variational method, using numerical computation. The aim is to obtain solutions for two polynomial potentials of the form V1(x)=x66x44 and V2(x)=x44x35x22, in order to obtain the probability distributions at different times t and initial conditions represented by x0. The results for the symmetric potential V1(x) are compared with values found in the literature. For the asymmetric potential V2(x), the solution is compared only with numerical results, also demonstrating a low margin of error. In both cases, the proposed technique generates probability distributions that respect the typical behavior of the Fokker–Planck equation, with percentage errors below 0.5% compared to reference methods.
The study demonstrates that the approach based on Gram–Schmidt orthogonalization and the variational method is an effective and alternative tool for solving the Fokker–Planck equation in systems described by polynomial potentials, reliably reproducing results for both ground and excited states.
As a possible application, the method is employed to investigate the folding dynamics of the protein CI2, treating folding as a diffusive process governed by the Fokker–Planck equation. A bistable polynomial potential of the form V(x)=a0x4+b0x3+c0x2+d0x+g0, obtained from computational simulations of the thermodynamic free energy curve, is employed to model the energy profile of the protein. This methodology enables the analysis of the time evolution of the probability distribution under different initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信