Himawan Tri Bayu Murti Petrus , Amelia Andriani , Vincent Sutresno Hadi Sujoto , Monica Inggrini , Muhammad Syauqi , Widi Astuti , Siti Nurul Aisyiyah Jenie , Kevin Cleary Wanta , Ferian Anggara , Indra Perdana , Panut Mulyono , Yuni Kusumastuti
{"title":"利用易溶共沉淀法从地热二氧化硅中高效合成二氧化硅纳米颗粒:统计优化和动力学分析","authors":"Himawan Tri Bayu Murti Petrus , Amelia Andriani , Vincent Sutresno Hadi Sujoto , Monica Inggrini , Muhammad Syauqi , Widi Astuti , Siti Nurul Aisyiyah Jenie , Kevin Cleary Wanta , Ferian Anggara , Indra Perdana , Panut Mulyono , Yuni Kusumastuti","doi":"10.1016/j.partic.2025.08.018","DOIUrl":null,"url":null,"abstract":"<div><div>Silica nanoparticles play a vital role in a range of industries, including agriculture, pharmaceuticals, biomedicine, ceramics, and advanced materials. However, conventional synthesis methods typically rely on expensive and environmentally burdensome chemical precursors. This study explores the hypothesis that geothermal sludge, a by-product of geothermal power plants, can serve as a sustainable and efficient source for producing high-purity silica nanoparticles through a simplified synthesis approach. The process involves three key purification stages—water washing, acid leaching, and conversion to sodium silicate—followed by co-precipitation to obtain the final silica product. To optimize the synthesis, experimental conditions were statistically evaluated using response surface methodology to identify the effect of pH and sodium silicate ratio on the silica yield. The highest yield (100 %) and purity (97.03 %) were achieved under neutral pH conditions and a sodium silicate ratio of 1:1 by volume. Material characterization was conducted using elemental analysis, X-ray diffraction, and electron microscopy to confirm the structural and morphological properties. In addition, kinetic modeling revealed the influence of agitation speed and temperature on silica precipitation dynamics, and a dimensionless correlation was developed to quantify the mass transfer coefficient during the process. The findings demonstrate a promising and more sustainable pathway for silica nanoparticle production using industrial waste as feedstock. While direct financial metrics were not assessed, the use of readily available by-products and simplified process conditions suggest potential for economic advantages, meriting further techno-economic evaluation in future work.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"106 ","pages":"Pages 222-235"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-yield synthesis of silica nanoparticles from geothermal silica via a facile co-precipitation method: Statistical optimization and kinetic analysis\",\"authors\":\"Himawan Tri Bayu Murti Petrus , Amelia Andriani , Vincent Sutresno Hadi Sujoto , Monica Inggrini , Muhammad Syauqi , Widi Astuti , Siti Nurul Aisyiyah Jenie , Kevin Cleary Wanta , Ferian Anggara , Indra Perdana , Panut Mulyono , Yuni Kusumastuti\",\"doi\":\"10.1016/j.partic.2025.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silica nanoparticles play a vital role in a range of industries, including agriculture, pharmaceuticals, biomedicine, ceramics, and advanced materials. However, conventional synthesis methods typically rely on expensive and environmentally burdensome chemical precursors. This study explores the hypothesis that geothermal sludge, a by-product of geothermal power plants, can serve as a sustainable and efficient source for producing high-purity silica nanoparticles through a simplified synthesis approach. The process involves three key purification stages—water washing, acid leaching, and conversion to sodium silicate—followed by co-precipitation to obtain the final silica product. To optimize the synthesis, experimental conditions were statistically evaluated using response surface methodology to identify the effect of pH and sodium silicate ratio on the silica yield. The highest yield (100 %) and purity (97.03 %) were achieved under neutral pH conditions and a sodium silicate ratio of 1:1 by volume. Material characterization was conducted using elemental analysis, X-ray diffraction, and electron microscopy to confirm the structural and morphological properties. In addition, kinetic modeling revealed the influence of agitation speed and temperature on silica precipitation dynamics, and a dimensionless correlation was developed to quantify the mass transfer coefficient during the process. The findings demonstrate a promising and more sustainable pathway for silica nanoparticle production using industrial waste as feedstock. While direct financial metrics were not assessed, the use of readily available by-products and simplified process conditions suggest potential for economic advantages, meriting further techno-economic evaluation in future work.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"106 \",\"pages\":\"Pages 222-235\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200125002287\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125002287","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
High-yield synthesis of silica nanoparticles from geothermal silica via a facile co-precipitation method: Statistical optimization and kinetic analysis
Silica nanoparticles play a vital role in a range of industries, including agriculture, pharmaceuticals, biomedicine, ceramics, and advanced materials. However, conventional synthesis methods typically rely on expensive and environmentally burdensome chemical precursors. This study explores the hypothesis that geothermal sludge, a by-product of geothermal power plants, can serve as a sustainable and efficient source for producing high-purity silica nanoparticles through a simplified synthesis approach. The process involves three key purification stages—water washing, acid leaching, and conversion to sodium silicate—followed by co-precipitation to obtain the final silica product. To optimize the synthesis, experimental conditions were statistically evaluated using response surface methodology to identify the effect of pH and sodium silicate ratio on the silica yield. The highest yield (100 %) and purity (97.03 %) were achieved under neutral pH conditions and a sodium silicate ratio of 1:1 by volume. Material characterization was conducted using elemental analysis, X-ray diffraction, and electron microscopy to confirm the structural and morphological properties. In addition, kinetic modeling revealed the influence of agitation speed and temperature on silica precipitation dynamics, and a dimensionless correlation was developed to quantify the mass transfer coefficient during the process. The findings demonstrate a promising and more sustainable pathway for silica nanoparticle production using industrial waste as feedstock. While direct financial metrics were not assessed, the use of readily available by-products and simplified process conditions suggest potential for economic advantages, meriting further techno-economic evaluation in future work.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.