含沙环境下风力机尾流中粒子的输运与聚集

IF 3.8 2区 工程技术 Q1 MECHANICS
Yan Wang , Fuqiang Zhang , Gaosheng Ma , Ye Li , Ruifeng Hu
{"title":"含沙环境下风力机尾流中粒子的输运与聚集","authors":"Yan Wang ,&nbsp;Fuqiang Zhang ,&nbsp;Gaosheng Ma ,&nbsp;Ye Li ,&nbsp;Ruifeng Hu","doi":"10.1016/j.ijmultiphaseflow.2025.105411","DOIUrl":null,"url":null,"abstract":"<div><div>The potential for wind farms installed in arid and semi-arid regions (like deserts and gobi) has gained increasing attention, making the study of particle transport in wind turbine wake particularly relevant. In this work, we investigate the transport and distribution of sand-grain particles with different Stokes numbers (<span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span>) in a wind turbine wake by large-eddy simulation for the gas phase and the Eulerian–Lagrangian method for the solid phase. The simulation results reveal a strong correlation between particle transport and particle inertia characterized by <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span>. As <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span> increases, the particle transport transits from a tracer-like state dominated by the flow to ballistic motions. A nonmonotonic relationship between local particle clustering and <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span> is discovered using the box-counting method. The local particle clustering is found to be strongest at <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span> = 1, which is independent of cell box size. A threshold for the clustering of particles in the turbine wake is proposed based on flow parameters and Voronoï cell area. Furthermore, we found that gravity enhances clustering for low-inertia particles, while weakening it for high-inertia particles, and it reduces particle clustering in straining regions. This study is expected to provide essential insights for the evaluation and prediction of sand-grain particle transport in wind turbine wake.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"194 ","pages":"Article 105411"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle transport and clustering in wind turbine wake under sand-laden environment\",\"authors\":\"Yan Wang ,&nbsp;Fuqiang Zhang ,&nbsp;Gaosheng Ma ,&nbsp;Ye Li ,&nbsp;Ruifeng Hu\",\"doi\":\"10.1016/j.ijmultiphaseflow.2025.105411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The potential for wind farms installed in arid and semi-arid regions (like deserts and gobi) has gained increasing attention, making the study of particle transport in wind turbine wake particularly relevant. In this work, we investigate the transport and distribution of sand-grain particles with different Stokes numbers (<span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span>) in a wind turbine wake by large-eddy simulation for the gas phase and the Eulerian–Lagrangian method for the solid phase. The simulation results reveal a strong correlation between particle transport and particle inertia characterized by <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span>. As <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span> increases, the particle transport transits from a tracer-like state dominated by the flow to ballistic motions. A nonmonotonic relationship between local particle clustering and <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span> is discovered using the box-counting method. The local particle clustering is found to be strongest at <span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span> = 1, which is independent of cell box size. A threshold for the clustering of particles in the turbine wake is proposed based on flow parameters and Voronoï cell area. Furthermore, we found that gravity enhances clustering for low-inertia particles, while weakening it for high-inertia particles, and it reduces particle clustering in straining regions. This study is expected to provide essential insights for the evaluation and prediction of sand-grain particle transport in wind turbine wake.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"194 \",\"pages\":\"Article 105411\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932225002873\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225002873","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在干旱和半干旱地区(如沙漠和戈壁)建立风力发电场的潜力已经引起了越来越多的关注,这使得研究风力涡轮机尾流中的粒子传输变得尤为重要。本文采用气相大涡模拟和固相欧拉-拉格朗日方法研究了不同斯托克斯数(St)的沙粒在风力机尾流中的输运和分布。模拟结果表明,粒子输运与以St为特征的粒子惯性之间存在很强的相关性,随着St的增加,粒子输运从以流动为主的示踪态过渡到弹道运动态。利用盒计数方法发现了局部粒子聚类与St之间的非单调关系。发现局部粒子聚类在St = 1时最强,这与单元盒大小无关。提出了基于流动参数和Voronoï单元面积的涡轮尾迹颗粒聚类阈值。此外,我们发现重力增强了低惯性粒子的聚类,而减弱了高惯性粒子的聚类,并减少了应变区粒子的聚类。该研究有望为风力机尾流中沙粒输运的评估和预测提供重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Particle transport and clustering in wind turbine wake under sand-laden environment

Particle transport and clustering in wind turbine wake under sand-laden environment
The potential for wind farms installed in arid and semi-arid regions (like deserts and gobi) has gained increasing attention, making the study of particle transport in wind turbine wake particularly relevant. In this work, we investigate the transport and distribution of sand-grain particles with different Stokes numbers (St) in a wind turbine wake by large-eddy simulation for the gas phase and the Eulerian–Lagrangian method for the solid phase. The simulation results reveal a strong correlation between particle transport and particle inertia characterized by St. As St increases, the particle transport transits from a tracer-like state dominated by the flow to ballistic motions. A nonmonotonic relationship between local particle clustering and St is discovered using the box-counting method. The local particle clustering is found to be strongest at St = 1, which is independent of cell box size. A threshold for the clustering of particles in the turbine wake is proposed based on flow parameters and Voronoï cell area. Furthermore, we found that gravity enhances clustering for low-inertia particles, while weakening it for high-inertia particles, and it reduces particle clustering in straining regions. This study is expected to provide essential insights for the evaluation and prediction of sand-grain particle transport in wind turbine wake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信