线性周期时变系统的L∞/L2汉克尔范数分析及临界时刻检测

IF 2.5 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Tomomichi Hagiwara , Taichi Yuyama , Jung Hoon Kim
{"title":"线性周期时变系统的L∞/L2汉克尔范数分析及临界时刻检测","authors":"Tomomichi Hagiwara ,&nbsp;Taichi Yuyama ,&nbsp;Jung Hoon Kim","doi":"10.1016/j.sysconle.2025.106235","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the Hankel norm analysis of linear periodically time-varying (LPTV) systems, where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is taken as the (past) input space and the (future) output is regarded as an element in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>. This norm is known to be important because of its coincidence with the well-known <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> norm for the special case of single-output linear time-invariant systems. For the period <span><math><mi>h</mi></math></span> of LPTV systems, an arbitrary instant <span><math><mrow><mi>Θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> is first taken to separate past and future, and then the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norm at <span><math><mi>Θ</mi></math></span> is defined. A computation method for the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norm for each <span><math><mi>Θ</mi></math></span> is further derived, and for <em>the</em> <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norm defined as the supremum of the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norms over <span><math><mrow><mi>Θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span>, its alternative and direct computation method is also provided, which is actually completely free from dealing with any quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norms. A relevant question of whether the supremum is attained as the maximum is also studied, in which case each maximum-attaining <span><math><mi>Θ</mi></math></span> is called a critical instant. In particular, it is discussed when and how the existence/absence of a critical instant can be determined and some or all critical instants can be detected without directly computing all (or any of) the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norms over <span><math><mrow><mi>Θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span>. Finally, numerical examples are provided to illustrate the arguments of this paper.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"205 ","pages":"Article 106235"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L∞/L2 Hankel norm analysis of linear periodically time-varying systems and detection of critical instants\",\"authors\":\"Tomomichi Hagiwara ,&nbsp;Taichi Yuyama ,&nbsp;Jung Hoon Kim\",\"doi\":\"10.1016/j.sysconle.2025.106235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with the Hankel norm analysis of linear periodically time-varying (LPTV) systems, where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is taken as the (past) input space and the (future) output is regarded as an element in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>. This norm is known to be important because of its coincidence with the well-known <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> norm for the special case of single-output linear time-invariant systems. For the period <span><math><mi>h</mi></math></span> of LPTV systems, an arbitrary instant <span><math><mrow><mi>Θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> is first taken to separate past and future, and then the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norm at <span><math><mi>Θ</mi></math></span> is defined. A computation method for the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norm for each <span><math><mi>Θ</mi></math></span> is further derived, and for <em>the</em> <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norm defined as the supremum of the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norms over <span><math><mrow><mi>Θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span>, its alternative and direct computation method is also provided, which is actually completely free from dealing with any quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norms. A relevant question of whether the supremum is attained as the maximum is also studied, in which case each maximum-attaining <span><math><mi>Θ</mi></math></span> is called a critical instant. In particular, it is discussed when and how the existence/absence of a critical instant can be determined and some or all critical instants can be detected without directly computing all (or any of) the quasi <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> Hankel norms over <span><math><mrow><mi>Θ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span>. Finally, numerical examples are provided to illustrate the arguments of this paper.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"205 \",\"pages\":\"Article 106235\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125002178\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125002178","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究线性周期时变(LPTV)系统的Hankel范数分析,其中L2作为(过去)输入空间,(未来)输出作为L∞上的一个元素。这个范数是非常重要的,因为对于单输出线性定常系统的特殊情况,它与H2范数是一致的。对于LPTV系统的周期h,首先取任意时刻Θ∈[0,h]来区分过去和未来,然后定义Θ处的拟L∞/L2 Hankel范数。进一步推导了每个Θ的拟L∞/L2 Hankel范数的计算方法,对于定义为Θ∈[0,h]上的拟L∞/L2 Hankel范数的上零点的L∞/L2 Hankel范数,也提供了其替代的直接计算方法,实际上完全不需要处理任何拟L∞/L2 Hankel范数。还研究了是否达到最高作为最大值的相关问题,在这种情况下,每个达到最大值Θ称为临界时刻。特别地,讨论了在不直接计算Θ∈[0,h]上的所有(或任何)拟L∞/L2 Hankel范数的情况下,何时及如何确定临界瞬间的存在/不存在,以及如何检测部分或全部临界瞬间。最后,给出了数值算例来说明本文的论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L∞/L2 Hankel norm analysis of linear periodically time-varying systems and detection of critical instants
This paper deals with the Hankel norm analysis of linear periodically time-varying (LPTV) systems, where L2 is taken as the (past) input space and the (future) output is regarded as an element in L. This norm is known to be important because of its coincidence with the well-known H2 norm for the special case of single-output linear time-invariant systems. For the period h of LPTV systems, an arbitrary instant Θ[0,h) is first taken to separate past and future, and then the quasi L/L2 Hankel norm at Θ is defined. A computation method for the quasi L/L2 Hankel norm for each Θ is further derived, and for the L/L2 Hankel norm defined as the supremum of the quasi L/L2 Hankel norms over Θ[0,h), its alternative and direct computation method is also provided, which is actually completely free from dealing with any quasi L/L2 Hankel norms. A relevant question of whether the supremum is attained as the maximum is also studied, in which case each maximum-attaining Θ is called a critical instant. In particular, it is discussed when and how the existence/absence of a critical instant can be determined and some or all critical instants can be detected without directly computing all (or any of) the quasi L/L2 Hankel norms over Θ[0,h). Finally, numerical examples are provided to illustrate the arguments of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信