联邦深度mpc支持的数字孪生和多智能体学习框架,用于安全和可扩展的智能纳米电网能源管理

IF 5.9 Q2 ENERGY & FUELS
Ibrahim Sinneh Sinneh, Sun Yanxia
{"title":"联邦深度mpc支持的数字孪生和多智能体学习框架,用于安全和可扩展的智能纳米电网能源管理","authors":"Ibrahim Sinneh Sinneh,&nbsp;Sun Yanxia","doi":"10.1016/j.ref.2025.100762","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel Federated Secure Dynamic Optimization Framework (FSDOF) to improve smart nano grid systems’ energy management, fault tolerance, and cybersecurity. The framework suggested combines Digital Twin (DT) technology and Multiagent Reinforcement Learning (MARL) to assist in real-time decision-making and decentralized control. In essence, FSDOF integrates three major components: Federated Deep Model Predictive Control (FD-MPC) to schedule energy optimally, SecureGraph-FedNet (SG-FedNet) to communicate through Graph Neural Networks and Autoencoders securely, and Dynamic Stochastic Neuro-Evolution Optimizer (DSNEO) to adaptively handle and optimize under uncertainty. The system demonstrated 98.52 % energy efficiency, DC voltage stabilization in 0.5 seconds, and Bit Error Rate (BER) of 0.012, which is better than the traditional DRL methods. SG-FedNet guarantees a security confidence of 0.99 in federated learning with differential privacy. Scalability and resilience of the system were confirmed by large-scale simulations on more than 100 nodes with less than 4 % performance degradation. These findings make FSDOF a scalable and strong solution to next-generation smart energy networks.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"56 ","pages":"Article 100762"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated deep MPC-enabled digital twin and multiagent learning framework for secure and scalable smart nano grid energy management\",\"authors\":\"Ibrahim Sinneh Sinneh,&nbsp;Sun Yanxia\",\"doi\":\"10.1016/j.ref.2025.100762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a novel Federated Secure Dynamic Optimization Framework (FSDOF) to improve smart nano grid systems’ energy management, fault tolerance, and cybersecurity. The framework suggested combines Digital Twin (DT) technology and Multiagent Reinforcement Learning (MARL) to assist in real-time decision-making and decentralized control. In essence, FSDOF integrates three major components: Federated Deep Model Predictive Control (FD-MPC) to schedule energy optimally, SecureGraph-FedNet (SG-FedNet) to communicate through Graph Neural Networks and Autoencoders securely, and Dynamic Stochastic Neuro-Evolution Optimizer (DSNEO) to adaptively handle and optimize under uncertainty. The system demonstrated 98.52 % energy efficiency, DC voltage stabilization in 0.5 seconds, and Bit Error Rate (BER) of 0.012, which is better than the traditional DRL methods. SG-FedNet guarantees a security confidence of 0.99 in federated learning with differential privacy. Scalability and resilience of the system were confirmed by large-scale simulations on more than 100 nodes with less than 4 % performance degradation. These findings make FSDOF a scalable and strong solution to next-generation smart energy networks.</div></div>\",\"PeriodicalId\":29780,\"journal\":{\"name\":\"Renewable Energy Focus\",\"volume\":\"56 \",\"pages\":\"Article 100762\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755008425000845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008425000845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出一种新的联邦安全动态优化框架(FSDOF),以改善智能纳米电网系统的能量管理、容错和网络安全。该框架建议将数字孪生(DT)技术和多智能体强化学习(MARL)相结合,以辅助实时决策和分散控制。从本质上讲,FSDOF集成了三个主要组件:联邦深度模型预测控制(FD-MPC)以优化能源调度,SecureGraph-FedNet (SG-FedNet)通过图神经网络和自编码器安全地通信,动态随机神经进化优化器(DSNEO)在不确定性下自适应处理和优化。该系统节能98.52%,直流稳压时间为0.5秒,误码率为0.012,优于传统的DRL方法。SG-FedNet在差分隐私的联邦学习中保证了0.99的安全置信度。通过在100多个节点上的大规模仿真,验证了系统的可扩展性和弹性,性能下降幅度小于4%。这些发现使FSDOF成为下一代智能能源网络的可扩展且强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated deep MPC-enabled digital twin and multiagent learning framework for secure and scalable smart nano grid energy management
This study introduces a novel Federated Secure Dynamic Optimization Framework (FSDOF) to improve smart nano grid systems’ energy management, fault tolerance, and cybersecurity. The framework suggested combines Digital Twin (DT) technology and Multiagent Reinforcement Learning (MARL) to assist in real-time decision-making and decentralized control. In essence, FSDOF integrates three major components: Federated Deep Model Predictive Control (FD-MPC) to schedule energy optimally, SecureGraph-FedNet (SG-FedNet) to communicate through Graph Neural Networks and Autoencoders securely, and Dynamic Stochastic Neuro-Evolution Optimizer (DSNEO) to adaptively handle and optimize under uncertainty. The system demonstrated 98.52 % energy efficiency, DC voltage stabilization in 0.5 seconds, and Bit Error Rate (BER) of 0.012, which is better than the traditional DRL methods. SG-FedNet guarantees a security confidence of 0.99 in federated learning with differential privacy. Scalability and resilience of the system were confirmed by large-scale simulations on more than 100 nodes with less than 4 % performance degradation. These findings make FSDOF a scalable and strong solution to next-generation smart energy networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信