Besov空间中具有高阶非线性多峰的广义双分量camassa - holm型系统的适定性和非一致相关性

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Haiquan Wang
{"title":"Besov空间中具有高阶非线性多峰的广义双分量camassa - holm型系统的适定性和非一致相关性","authors":"Haiquan Wang","doi":"10.1016/j.bulsci.2025.103725","DOIUrl":null,"url":null,"abstract":"<div><div>Considered herein is a generalized two-component Camassa-Holm-type system with high-order nonlinearities and multi-peakons, which contains some integrable shallow water wave equations, such as Camassa-Holm equation, Degasperis-Procesi equation, Novikov equation and Geng-Xue system. At first, the results with respect to the local well-posedness of the solutions of Cauchy problem of this system in Besov spaces are demonstrated in detail. Then, the non-uniformly continuous dependence on initial data of the solutions of this problem in Besov spaces on the torus and line is established by constructing new appropriate approximate solutions and initial data. In the process of proof, we need to rely upon Littlewood-Paley decomposition theory and overcome the difficulties resulting from the high-order nonlinearities of the system.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103725"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and non-uniform dependence for a generalized two-component Camassa-Holm-type system with high-order nonlinearities and multi-peakons in Besov spaces\",\"authors\":\"Haiquan Wang\",\"doi\":\"10.1016/j.bulsci.2025.103725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Considered herein is a generalized two-component Camassa-Holm-type system with high-order nonlinearities and multi-peakons, which contains some integrable shallow water wave equations, such as Camassa-Holm equation, Degasperis-Procesi equation, Novikov equation and Geng-Xue system. At first, the results with respect to the local well-posedness of the solutions of Cauchy problem of this system in Besov spaces are demonstrated in detail. Then, the non-uniformly continuous dependence on initial data of the solutions of this problem in Besov spaces on the torus and line is established by constructing new appropriate approximate solutions and initial data. In the process of proof, we need to rely upon Littlewood-Paley decomposition theory and overcome the difficulties resulting from the high-order nonlinearities of the system.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"206 \",\"pages\":\"Article 103725\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001514\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001514","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一类具有高阶非线性和多峰的广义双分量Camassa-Holm型系统,该系统包含Camassa-Holm方程、Degasperis-Procesi方程、Novikov方程和耿雪系统等可积浅水波动方程。首先详细地证明了该系统在Besov空间中Cauchy问题解的局部适定性。然后,通过构造新的合适的近似解和初始数据,建立了该问题在Besov空间中解对环面和直线的非一致连续依赖关系。在证明过程中,我们需要依靠Littlewood-Paley分解理论,克服系统的高阶非线性所带来的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness and non-uniform dependence for a generalized two-component Camassa-Holm-type system with high-order nonlinearities and multi-peakons in Besov spaces
Considered herein is a generalized two-component Camassa-Holm-type system with high-order nonlinearities and multi-peakons, which contains some integrable shallow water wave equations, such as Camassa-Holm equation, Degasperis-Procesi equation, Novikov equation and Geng-Xue system. At first, the results with respect to the local well-posedness of the solutions of Cauchy problem of this system in Besov spaces are demonstrated in detail. Then, the non-uniformly continuous dependence on initial data of the solutions of this problem in Besov spaces on the torus and line is established by constructing new appropriate approximate solutions and initial data. In the process of proof, we need to rely upon Littlewood-Paley decomposition theory and overcome the difficulties resulting from the high-order nonlinearities of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信