交变不变函数的性质

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Haiqing Zhu , Su Hu , Min-Soo Kim
{"title":"交变不变函数的性质","authors":"Haiqing Zhu ,&nbsp;Su Hu ,&nbsp;Min-Soo Kim","doi":"10.1016/j.bulsci.2025.103724","DOIUrl":null,"url":null,"abstract":"<div><div>Functions satisfying the functional equation<span><span><span><math><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>f</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>r</mi><mi>y</mi><mo>,</mo><mi>n</mi><mi>y</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mspace></mspace><mtext>for any positive odd integer</mtext><mspace></mspace><mi>n</mi><mo>,</mo></math></span></span></span> are named the alternating invariant functions. Examples of such functions include Euler polynomials, alternating Hurwitz zeta functions and their associated Gamma functions. In this paper, we systematically investigate the fundamental properties of alternating invariant functions. We prove that the set of such functions is closed under translation, reflection, and differentiation. In addition, we define a convolution operation on alternating invariant functions and derive explicit convolution formulas for Euler polynomials and alternating Hurwitz zeta functions, respectively. Furthermore, using distributional relations, we construct new examples of alternating invariant functions, including suitable combinations of trigonometric, exponential, and logarithmic functions, among others.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103724"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the properties of alternating invariant functions\",\"authors\":\"Haiqing Zhu ,&nbsp;Su Hu ,&nbsp;Min-Soo Kim\",\"doi\":\"10.1016/j.bulsci.2025.103724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Functions satisfying the functional equation<span><span><span><math><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>f</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>r</mi><mi>y</mi><mo>,</mo><mi>n</mi><mi>y</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mspace></mspace><mtext>for any positive odd integer</mtext><mspace></mspace><mi>n</mi><mo>,</mo></math></span></span></span> are named the alternating invariant functions. Examples of such functions include Euler polynomials, alternating Hurwitz zeta functions and their associated Gamma functions. In this paper, we systematically investigate the fundamental properties of alternating invariant functions. We prove that the set of such functions is closed under translation, reflection, and differentiation. In addition, we define a convolution operation on alternating invariant functions and derive explicit convolution formulas for Euler polynomials and alternating Hurwitz zeta functions, respectively. Furthermore, using distributional relations, we construct new examples of alternating invariant functions, including suitable combinations of trigonometric, exponential, and logarithmic functions, among others.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"206 \",\"pages\":\"Article 103724\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001502\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001502","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于任意正奇整数,满足函数方程∑r=0n−1(−1)rf(x+ry,ny)=f(x,y)的函数称为交替不变函数。这些函数的例子包括欧拉多项式,交替Hurwitz zeta函数和它们相关的Gamma函数。本文系统地研究了交变不变函数的基本性质。证明了这类函数的集合在平移、反射和微分下是封闭的。此外,我们定义了交替不变函数的卷积运算,并分别导出了欧拉多项式和交替Hurwitz zeta函数的显式卷积公式。此外,利用分布关系,我们构造了交替不变函数的新例子,包括三角函数、指数函数和对数函数的适当组合等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the properties of alternating invariant functions
Functions satisfying the functional equationr=0n1(1)rf(x+ry,ny)=f(x,y),for any positive odd integern, are named the alternating invariant functions. Examples of such functions include Euler polynomials, alternating Hurwitz zeta functions and their associated Gamma functions. In this paper, we systematically investigate the fundamental properties of alternating invariant functions. We prove that the set of such functions is closed under translation, reflection, and differentiation. In addition, we define a convolution operation on alternating invariant functions and derive explicit convolution formulas for Euler polynomials and alternating Hurwitz zeta functions, respectively. Furthermore, using distributional relations, we construct new examples of alternating invariant functions, including suitable combinations of trigonometric, exponential, and logarithmic functions, among others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信