C-SiOxCy单体的可调合成

IF 4.7 3区 材料科学 Q1 CHEMISTRY, APPLIED
Julia Wagner , Julien Jaxel , Katia Guérin , Sandrine Berthon-Fabry
{"title":"C-SiOxCy单体的可调合成","authors":"Julia Wagner ,&nbsp;Julien Jaxel ,&nbsp;Katia Guérin ,&nbsp;Sandrine Berthon-Fabry","doi":"10.1016/j.micromeso.2025.113863","DOIUrl":null,"url":null,"abstract":"<div><div>This study establishes key structure–property relationships, offering valuable guidelines for designing porous monolithic C-SiO<sub>x</sub>C<sub>y</sub> materials for energy storage sensors, and electrocatalysis. We report a tunable sol-gel synthesis of monolithic C-SiO<sub>x</sub>C<sub>y</sub> composites with tailored physicochemical and electrical properties. By combining resorcinol, formaldehyde, TEOS, APTES, and kapok fibers, twenty-one formulations were prepared while systematically varying five synthesis parameters: TEOS-to-resorcinol molar ratio, sol concentration, sol pH, drying method, and pyrolysis temperature. The resulting composites exhibited silica contents ranging from 19 to 80 wt%, bulk densities from 0.10 to 1.11 g/cm<sup>3</sup>, specific surface areas up to 562 m<sup>2</sup>/g, and electrical conductivities reaching 8 S/cm. Structural analyses (SEM, <sup>29</sup>Si NMR, N<sub>2</sub> adsorption) revealed that the materials consist of integrated hybrid networks rather than separate carbon and silica domains. Factor analyses highlighted the dominant roles of TEOS/R on composition and porosity, supercritical drying on texture, and pyrolysis temperature on conductivity. Acidic conditions and sol dilution promoted high surface areas and pore volumes, while alkaline pH and carbon-rich environments enhanced electrical transport.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"399 ","pages":"Article 113863"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable synthesis of C-SiOxCy monoliths\",\"authors\":\"Julia Wagner ,&nbsp;Julien Jaxel ,&nbsp;Katia Guérin ,&nbsp;Sandrine Berthon-Fabry\",\"doi\":\"10.1016/j.micromeso.2025.113863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study establishes key structure–property relationships, offering valuable guidelines for designing porous monolithic C-SiO<sub>x</sub>C<sub>y</sub> materials for energy storage sensors, and electrocatalysis. We report a tunable sol-gel synthesis of monolithic C-SiO<sub>x</sub>C<sub>y</sub> composites with tailored physicochemical and electrical properties. By combining resorcinol, formaldehyde, TEOS, APTES, and kapok fibers, twenty-one formulations were prepared while systematically varying five synthesis parameters: TEOS-to-resorcinol molar ratio, sol concentration, sol pH, drying method, and pyrolysis temperature. The resulting composites exhibited silica contents ranging from 19 to 80 wt%, bulk densities from 0.10 to 1.11 g/cm<sup>3</sup>, specific surface areas up to 562 m<sup>2</sup>/g, and electrical conductivities reaching 8 S/cm. Structural analyses (SEM, <sup>29</sup>Si NMR, N<sub>2</sub> adsorption) revealed that the materials consist of integrated hybrid networks rather than separate carbon and silica domains. Factor analyses highlighted the dominant roles of TEOS/R on composition and porosity, supercritical drying on texture, and pyrolysis temperature on conductivity. Acidic conditions and sol dilution promoted high surface areas and pore volumes, while alkaline pH and carbon-rich environments enhanced electrical transport.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"399 \",\"pages\":\"Article 113863\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125003786\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125003786","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

该研究建立了关键的结构-性能关系,为设计用于储能传感器和电催化的多孔单片C-SiOxCy材料提供了有价值的指导。我们报道了一种可调的溶胶-凝胶合成整体C-SiOxCy复合材料,具有定制的物理化学和电学性能。通过将间苯二酚、甲醛、TEOS、APTES和木棉纤维结合,系统地改变了TEOS与间苯二酚的摩尔比、溶胶浓度、溶胶pH、干燥方式和热解温度等5个合成参数,制备了21个配方。所得复合材料的二氧化硅含量为19%至80%,体积密度为0.10至1.11 g/cm3,比表面积高达562 m2/g,电导率达到8 S/cm。结构分析(SEM, 29Si NMR, N2吸附)表明材料由完整的杂化网络组成,而不是单独的碳和硅畴。因子分析表明,TEOS/R对组分和孔隙度的影响最大,超临界干燥对结构的影响最大,热解温度对电导率的影响最大。酸性条件和土壤稀释促进了高表面积和孔隙体积,而碱性pH和富碳环境增强了电传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable synthesis of C-SiOxCy monoliths

Tunable synthesis of C-SiOxCy monoliths
This study establishes key structure–property relationships, offering valuable guidelines for designing porous monolithic C-SiOxCy materials for energy storage sensors, and electrocatalysis. We report a tunable sol-gel synthesis of monolithic C-SiOxCy composites with tailored physicochemical and electrical properties. By combining resorcinol, formaldehyde, TEOS, APTES, and kapok fibers, twenty-one formulations were prepared while systematically varying five synthesis parameters: TEOS-to-resorcinol molar ratio, sol concentration, sol pH, drying method, and pyrolysis temperature. The resulting composites exhibited silica contents ranging from 19 to 80 wt%, bulk densities from 0.10 to 1.11 g/cm3, specific surface areas up to 562 m2/g, and electrical conductivities reaching 8 S/cm. Structural analyses (SEM, 29Si NMR, N2 adsorption) revealed that the materials consist of integrated hybrid networks rather than separate carbon and silica domains. Factor analyses highlighted the dominant roles of TEOS/R on composition and porosity, supercritical drying on texture, and pyrolysis temperature on conductivity. Acidic conditions and sol dilution promoted high surface areas and pore volumes, while alkaline pH and carbon-rich environments enhanced electrical transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信