用于钒液流电池的高离子电导率和选择性多孔支链聚苯并咪唑膜

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Xiyang Liu , Deqi Zeng , Wenheng Huang , Jinchao Li , Liang Chen , Qin Chen , Ming Wang , Yaping Zhang
{"title":"用于钒液流电池的高离子电导率和选择性多孔支链聚苯并咪唑膜","authors":"Xiyang Liu ,&nbsp;Deqi Zeng ,&nbsp;Wenheng Huang ,&nbsp;Jinchao Li ,&nbsp;Liang Chen ,&nbsp;Qin Chen ,&nbsp;Ming Wang ,&nbsp;Yaping Zhang","doi":"10.1016/j.memsci.2025.124725","DOIUrl":null,"url":null,"abstract":"<div><div>Developing a high-performance membrane is essential for advancing the commercialization of vanadium flow battery (VFB). Although polybenzimidazole membrane exhibits multiple beneficial characteristics, its practical implementation in VFB is constrained by insufficient ion conductivity and the trade-off effect between ion conductivity and selectivity. Herein, the porous branched polybenzimidazole (PBPBI) membranes were fabricated through the combination of molecular structure regulation and non-solvent induced phase separation strategies. The PBPBI membrane can achieve high ion conductivity and selectivity, which effectively enhanced the efficiencies of VFB. Exhilaratingly, the optimized PBPBI-4 membrane exhibited an ion conductivity of 36.8 mS cm<sup>−1</sup>, surpassing that of Nafion 212 membrane (30.3 mS cm<sup>−1</sup>). Additionally, the ion selectivity of PBPBI-4 membrane (5.99 × 10<sup>6</sup> S min cm<sup>−3</sup>) was substantially superior to Nafion 212 membrane (5.64 × 10<sup>4</sup> S min cm<sup>−3</sup>). Both ion conductivity and selectivity values of PBPBI-4 membrane remain a top level compared with polybenzimidazole membranes developed in recent five years for VFB applications. The PBPBI-4 membrane exhibited superior coulomb efficiencies (96.09 %–98.18 %), voltage efficiencies (72.11 %–91.07 %) and energy efficiencies (70.80 %–87.51 %) to Nafion 212 membrane under current densities ranged from 80 to 300 mA cm<sup>−2</sup>. Moreover, the 700 VFB cycles of PBPBI-4 membrane at 140 mA cm<sup>−2</sup> were also stably executed, which confirmed outstanding structural and mechanical stabilities. Therefore, the PBPBI-4 membrane demonstrates a significant potential for implementation in VFB system.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"736 ","pages":"Article 124725"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous branched polybenzimidazole membranes with high ion conductivity and selectivity for vanadium flow battery\",\"authors\":\"Xiyang Liu ,&nbsp;Deqi Zeng ,&nbsp;Wenheng Huang ,&nbsp;Jinchao Li ,&nbsp;Liang Chen ,&nbsp;Qin Chen ,&nbsp;Ming Wang ,&nbsp;Yaping Zhang\",\"doi\":\"10.1016/j.memsci.2025.124725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing a high-performance membrane is essential for advancing the commercialization of vanadium flow battery (VFB). Although polybenzimidazole membrane exhibits multiple beneficial characteristics, its practical implementation in VFB is constrained by insufficient ion conductivity and the trade-off effect between ion conductivity and selectivity. Herein, the porous branched polybenzimidazole (PBPBI) membranes were fabricated through the combination of molecular structure regulation and non-solvent induced phase separation strategies. The PBPBI membrane can achieve high ion conductivity and selectivity, which effectively enhanced the efficiencies of VFB. Exhilaratingly, the optimized PBPBI-4 membrane exhibited an ion conductivity of 36.8 mS cm<sup>−1</sup>, surpassing that of Nafion 212 membrane (30.3 mS cm<sup>−1</sup>). Additionally, the ion selectivity of PBPBI-4 membrane (5.99 × 10<sup>6</sup> S min cm<sup>−3</sup>) was substantially superior to Nafion 212 membrane (5.64 × 10<sup>4</sup> S min cm<sup>−3</sup>). Both ion conductivity and selectivity values of PBPBI-4 membrane remain a top level compared with polybenzimidazole membranes developed in recent five years for VFB applications. The PBPBI-4 membrane exhibited superior coulomb efficiencies (96.09 %–98.18 %), voltage efficiencies (72.11 %–91.07 %) and energy efficiencies (70.80 %–87.51 %) to Nafion 212 membrane under current densities ranged from 80 to 300 mA cm<sup>−2</sup>. Moreover, the 700 VFB cycles of PBPBI-4 membrane at 140 mA cm<sup>−2</sup> were also stably executed, which confirmed outstanding structural and mechanical stabilities. Therefore, the PBPBI-4 membrane demonstrates a significant potential for implementation in VFB system.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"736 \",\"pages\":\"Article 124725\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738825010385\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825010385","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能膜是推进钒液流电池(VFB)商业化的关键。尽管多苯并咪唑膜具有多种有益的特性,但其在VFB中的实际应用受到离子电导率不足和离子电导率与选择性之间的权衡效应的限制。本文采用分子结构调控与非溶剂诱导相分离相结合的方法制备了支化聚苯并咪唑(PBPBI)多孔膜。PBPBI膜具有较高的离子电导率和选择性,有效地提高了VFB的效率。令人兴奋的是,优化后的PBPBI-4膜的离子电导率为36.8 mS cm−1,超过了Nafion 212膜的30.3 mS cm−1。此外,pbpbbi -4膜的离子选择性(5.99 × 106 S min cm−3)明显优于Nafion 212膜(5.64 × 104 S min cm−3)。与近五年来开发的多苯并咪唑膜相比,pbpbbi -4膜的离子电导率和选择性都保持在最高水平。在电流密度为80 ~ 300 mA cm−2范围内,pbpbbi -4膜的库仑效率(96.09% ~ 98.18%)、电压效率(72.11% ~ 91.07%)和能量效率(70.80% ~ 87.51%)均优于Nafion 212膜。此外,pbpbbi -4膜在140 mA cm−2下稳定地进行了700 VFB循环,证实了其良好的结构和机械稳定性。因此,PBPBI-4膜在VFB系统中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Porous branched polybenzimidazole membranes with high ion conductivity and selectivity for vanadium flow battery

Porous branched polybenzimidazole membranes with high ion conductivity and selectivity for vanadium flow battery
Developing a high-performance membrane is essential for advancing the commercialization of vanadium flow battery (VFB). Although polybenzimidazole membrane exhibits multiple beneficial characteristics, its practical implementation in VFB is constrained by insufficient ion conductivity and the trade-off effect between ion conductivity and selectivity. Herein, the porous branched polybenzimidazole (PBPBI) membranes were fabricated through the combination of molecular structure regulation and non-solvent induced phase separation strategies. The PBPBI membrane can achieve high ion conductivity and selectivity, which effectively enhanced the efficiencies of VFB. Exhilaratingly, the optimized PBPBI-4 membrane exhibited an ion conductivity of 36.8 mS cm−1, surpassing that of Nafion 212 membrane (30.3 mS cm−1). Additionally, the ion selectivity of PBPBI-4 membrane (5.99 × 106 S min cm−3) was substantially superior to Nafion 212 membrane (5.64 × 104 S min cm−3). Both ion conductivity and selectivity values of PBPBI-4 membrane remain a top level compared with polybenzimidazole membranes developed in recent five years for VFB applications. The PBPBI-4 membrane exhibited superior coulomb efficiencies (96.09 %–98.18 %), voltage efficiencies (72.11 %–91.07 %) and energy efficiencies (70.80 %–87.51 %) to Nafion 212 membrane under current densities ranged from 80 to 300 mA cm−2. Moreover, the 700 VFB cycles of PBPBI-4 membrane at 140 mA cm−2 were also stably executed, which confirmed outstanding structural and mechanical stabilities. Therefore, the PBPBI-4 membrane demonstrates a significant potential for implementation in VFB system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信