{"title":"GPT-5和开放权重大型语言模型:推理、透明度和控制方面的进展","authors":"Maikel Leon","doi":"10.1016/j.is.2025.102620","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid evolution of Generative Pre-trained Transformers (GPTs) has revolutionized natural language processing, enabling models to generate coherent text, solve mathematical problems, write code, and even reason about complex tasks. This paper presents a scientific review of GPT-5, OpenAI’s latest flagship model, and examines its innovations in comparison to previous generations of GPT. We summarize the model’s architecture and features, including hierarchical routing, expanded context windows, and enhanced tool-use capabilities, and survey empirical evidence of improved performance on academic benchmarks. A dedicated section discusses the release of open-weight mixture-of-experts models (GPT-OSS), describing their technical design, licensing, and comparative performance. Our analysis synthesizes findings from recent literature on long-context evaluation, cognitive biases, medical summarization, and hallucination vulnerability, highlighting where GPT-5 advances the state of the art and where challenges remain. We conclude by discussing the implications of open-weight models for transparency and reproducibility and propose directions for future research on evaluation, safety, and agentic behavior.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"136 ","pages":"Article 102620"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPT-5 and open-weight large language models: Advances in reasoning, transparency, and control\",\"authors\":\"Maikel Leon\",\"doi\":\"10.1016/j.is.2025.102620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid evolution of Generative Pre-trained Transformers (GPTs) has revolutionized natural language processing, enabling models to generate coherent text, solve mathematical problems, write code, and even reason about complex tasks. This paper presents a scientific review of GPT-5, OpenAI’s latest flagship model, and examines its innovations in comparison to previous generations of GPT. We summarize the model’s architecture and features, including hierarchical routing, expanded context windows, and enhanced tool-use capabilities, and survey empirical evidence of improved performance on academic benchmarks. A dedicated section discusses the release of open-weight mixture-of-experts models (GPT-OSS), describing their technical design, licensing, and comparative performance. Our analysis synthesizes findings from recent literature on long-context evaluation, cognitive biases, medical summarization, and hallucination vulnerability, highlighting where GPT-5 advances the state of the art and where challenges remain. We conclude by discussing the implications of open-weight models for transparency and reproducibility and propose directions for future research on evaluation, safety, and agentic behavior.</div></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"136 \",\"pages\":\"Article 102620\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437925001061\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437925001061","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
GPT-5 and open-weight large language models: Advances in reasoning, transparency, and control
The rapid evolution of Generative Pre-trained Transformers (GPTs) has revolutionized natural language processing, enabling models to generate coherent text, solve mathematical problems, write code, and even reason about complex tasks. This paper presents a scientific review of GPT-5, OpenAI’s latest flagship model, and examines its innovations in comparison to previous generations of GPT. We summarize the model’s architecture and features, including hierarchical routing, expanded context windows, and enhanced tool-use capabilities, and survey empirical evidence of improved performance on academic benchmarks. A dedicated section discusses the release of open-weight mixture-of-experts models (GPT-OSS), describing their technical design, licensing, and comparative performance. Our analysis synthesizes findings from recent literature on long-context evaluation, cognitive biases, medical summarization, and hallucination vulnerability, highlighting where GPT-5 advances the state of the art and where challenges remain. We conclude by discussing the implications of open-weight models for transparency and reproducibility and propose directions for future research on evaluation, safety, and agentic behavior.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.