简化细胞流动:声学驱动细胞对准体内流式细胞术的可行性

IF 4.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinwoo Kim , Jae Gwang Kwon , Hyeon Sang Bark , Jin Ho Chang , Haemin Kim
{"title":"简化细胞流动:声学驱动细胞对准体内流式细胞术的可行性","authors":"Jinwoo Kim ,&nbsp;Jae Gwang Kwon ,&nbsp;Hyeon Sang Bark ,&nbsp;Jin Ho Chang ,&nbsp;Haemin Kim","doi":"10.1016/j.sna.2025.117066","DOIUrl":null,"url":null,"abstract":"<div><div>In vivo flow cytometry (IVFC) utilizes blood vessels as natural conduits for real-time and noninvasive monitoring of circulating cells. However, conventional IVFC systems are primarily limited to superficial vessels, restricting analytical throughput and diagnostic sensitivity. Here, we propose a novel acoustic-based cell alignment strategy that allows IVFC to be applied in a broader range of vascular locations. We developed a dual ultrasound transducer (DUST) system in which two transducers are positioned face-to-face at the same angle. This configuration generates an interference-based acoustic field containing periodically arranged pressure nodes and antinodes within the vessel. The resulting field aligns flowing cells into multiple parallel streamlines, concentrating their movement within a confined region and enhancing the consistency and efficiency of signal detection. Blood vessel mimicking phantom experiments demonstrated that a dual ultrasound (DUS) enables stable multiple parallel streamlines of microbeads in a vessel while maintaining uniform flow velocity. Furthermore, fluorescent beads modeling rare cells exhibited approximately a 9-fold increase in signal-to-noise ratio (SNR) under DUS application compared to the non-aligned condition. Signal intensity fluctuations at the detection point were also significantly reduced, enabling more stable and reliable signal analysis. This approach demonstrates strong potential for highly sensitive, single-cell-level diagnostics in vivo. It also enables seamless integration with photoacoustic or fluorescence-based detection systems for future multimodal single-cell analysis.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"395 ","pages":"Article 117066"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamlining the cell flow: Feasibility of acoustically driven cell alignment for in vivo flow cytometry\",\"authors\":\"Jinwoo Kim ,&nbsp;Jae Gwang Kwon ,&nbsp;Hyeon Sang Bark ,&nbsp;Jin Ho Chang ,&nbsp;Haemin Kim\",\"doi\":\"10.1016/j.sna.2025.117066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In vivo flow cytometry (IVFC) utilizes blood vessels as natural conduits for real-time and noninvasive monitoring of circulating cells. However, conventional IVFC systems are primarily limited to superficial vessels, restricting analytical throughput and diagnostic sensitivity. Here, we propose a novel acoustic-based cell alignment strategy that allows IVFC to be applied in a broader range of vascular locations. We developed a dual ultrasound transducer (DUST) system in which two transducers are positioned face-to-face at the same angle. This configuration generates an interference-based acoustic field containing periodically arranged pressure nodes and antinodes within the vessel. The resulting field aligns flowing cells into multiple parallel streamlines, concentrating their movement within a confined region and enhancing the consistency and efficiency of signal detection. Blood vessel mimicking phantom experiments demonstrated that a dual ultrasound (DUS) enables stable multiple parallel streamlines of microbeads in a vessel while maintaining uniform flow velocity. Furthermore, fluorescent beads modeling rare cells exhibited approximately a 9-fold increase in signal-to-noise ratio (SNR) under DUS application compared to the non-aligned condition. Signal intensity fluctuations at the detection point were also significantly reduced, enabling more stable and reliable signal analysis. This approach demonstrates strong potential for highly sensitive, single-cell-level diagnostics in vivo. It also enables seamless integration with photoacoustic or fluorescence-based detection systems for future multimodal single-cell analysis.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"395 \",\"pages\":\"Article 117066\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424725008726\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725008726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

体内流式细胞术(IVFC)利用血管作为天然管道,对循环细胞进行实时、无创监测。然而,传统的IVFC系统主要局限于浅表血管,限制了分析通量和诊断灵敏度。在这里,我们提出了一种新的基于声学的细胞对齐策略,允许IVFC应用于更广泛的血管位置。我们开发了一种双超声换能器(DUST)系统,其中两个换能器以相同的角度面对面放置。这种结构产生基于干涉的声场,其中包含容器内周期性排列的压力节点和反节点。由此产生的场将流动的细胞排列成多个平行的流线,将它们的运动集中在一个有限的区域内,提高了信号检测的一致性和效率。血管模拟幻影实验表明,双超声(DUS)可以在保持均匀流速的同时,在血管中稳定地形成多个平行的微珠流线。此外,与未对准的条件相比,在DUS应用下,荧光珠模拟稀有细胞的信噪比(SNR)增加了约9倍。测点的信号强度波动也大大减少,使信号分析更加稳定和可靠。这种方法在高灵敏度、单细胞水平的体内诊断方面显示出强大的潜力。它还可以与光声或基于荧光的检测系统无缝集成,用于未来的多模态单细胞分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Streamlining the cell flow: Feasibility of acoustically driven cell alignment for in vivo flow cytometry
In vivo flow cytometry (IVFC) utilizes blood vessels as natural conduits for real-time and noninvasive monitoring of circulating cells. However, conventional IVFC systems are primarily limited to superficial vessels, restricting analytical throughput and diagnostic sensitivity. Here, we propose a novel acoustic-based cell alignment strategy that allows IVFC to be applied in a broader range of vascular locations. We developed a dual ultrasound transducer (DUST) system in which two transducers are positioned face-to-face at the same angle. This configuration generates an interference-based acoustic field containing periodically arranged pressure nodes and antinodes within the vessel. The resulting field aligns flowing cells into multiple parallel streamlines, concentrating their movement within a confined region and enhancing the consistency and efficiency of signal detection. Blood vessel mimicking phantom experiments demonstrated that a dual ultrasound (DUS) enables stable multiple parallel streamlines of microbeads in a vessel while maintaining uniform flow velocity. Furthermore, fluorescent beads modeling rare cells exhibited approximately a 9-fold increase in signal-to-noise ratio (SNR) under DUS application compared to the non-aligned condition. Signal intensity fluctuations at the detection point were also significantly reduced, enabling more stable and reliable signal analysis. This approach demonstrates strong potential for highly sensitive, single-cell-level diagnostics in vivo. It also enables seamless integration with photoacoustic or fluorescence-based detection systems for future multimodal single-cell analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信