使用有机气体混合物的铜薄膜无复位干蚀刻

IF 3.9 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yoon Jae Cho, Ha Rin Song, Hong Ju Yang, Dae Han Won, Chee Won Chung
{"title":"使用有机气体混合物的铜薄膜无复位干蚀刻","authors":"Yoon Jae Cho,&nbsp;Ha Rin Song,&nbsp;Hong Ju Yang,&nbsp;Dae Han Won,&nbsp;Chee Won Chung","doi":"10.1016/j.vacuum.2025.114743","DOIUrl":null,"url":null,"abstract":"<div><div>Dry etching of copper thin films was investigated using acetylacetone/Ar and acetone/Ar gas mixtures. The effect of gas concentration on both the etch rate and the etch profile was evaluated, and the acetone/Ar gas mixture was found to provide redeposition-free etch profile with a high etch rate. Optical emission spectroscopy shows that the intensities of the effective active species were higher in acetone/Ar than in acetylacetone/Ar. X-ray photoelectron spectroscopy confirms the formation of copper compounds (CuO<sub>x</sub> and Cu(OH)<sub>2</sub>) during the etching process. Optimization of the etch parameters yields a good etch profile without redeposition. These results indicate that the acetone/Ar gas mixture is a promising etch gas for achieving redeposition-free copper etching at a high etch rate.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"242 ","pages":"Article 114743"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redeposition-free dry etching of copper thin films using organic gas mixtures\",\"authors\":\"Yoon Jae Cho,&nbsp;Ha Rin Song,&nbsp;Hong Ju Yang,&nbsp;Dae Han Won,&nbsp;Chee Won Chung\",\"doi\":\"10.1016/j.vacuum.2025.114743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dry etching of copper thin films was investigated using acetylacetone/Ar and acetone/Ar gas mixtures. The effect of gas concentration on both the etch rate and the etch profile was evaluated, and the acetone/Ar gas mixture was found to provide redeposition-free etch profile with a high etch rate. Optical emission spectroscopy shows that the intensities of the effective active species were higher in acetone/Ar than in acetylacetone/Ar. X-ray photoelectron spectroscopy confirms the formation of copper compounds (CuO<sub>x</sub> and Cu(OH)<sub>2</sub>) during the etching process. Optimization of the etch parameters yields a good etch profile without redeposition. These results indicate that the acetone/Ar gas mixture is a promising etch gas for achieving redeposition-free copper etching at a high etch rate.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"242 \",\"pages\":\"Article 114743\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X2500733X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X2500733X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用乙酰丙酮/氩气和丙酮/氩气混合气对铜薄膜进行了干法刻蚀。研究了气体浓度对刻蚀速率和刻蚀轮廓的影响,发现丙酮/Ar气体混合物可以提供高刻蚀速率的无重定位刻蚀轮廓。发射光谱分析表明,丙酮/Ar中有效活性物质的强度高于乙酰丙酮/Ar。x射线光电子能谱证实了在蚀刻过程中铜化合物(CuOx和Cu(OH)2)的形成。优化的蚀刻参数产生良好的蚀刻轮廓,没有再沉积。这些结果表明,丙酮/氩混合气体是一种很有前途的蚀刻气体,可以实现高蚀刻速率的无重定位铜蚀刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redeposition-free dry etching of copper thin films using organic gas mixtures
Dry etching of copper thin films was investigated using acetylacetone/Ar and acetone/Ar gas mixtures. The effect of gas concentration on both the etch rate and the etch profile was evaluated, and the acetone/Ar gas mixture was found to provide redeposition-free etch profile with a high etch rate. Optical emission spectroscopy shows that the intensities of the effective active species were higher in acetone/Ar than in acetylacetone/Ar. X-ray photoelectron spectroscopy confirms the formation of copper compounds (CuOx and Cu(OH)2) during the etching process. Optimization of the etch parameters yields a good etch profile without redeposition. These results indicate that the acetone/Ar gas mixture is a promising etch gas for achieving redeposition-free copper etching at a high etch rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信