G. Hacker , G. Just , S. Scheffler , I. Koch , M. Gude , R. Rolfes
{"title":"静态和疲劳载荷下数值分层模拟非线性黏结桥接规律的有效推导","authors":"G. Hacker , G. Just , S. Scheffler , I. Koch , M. Gude , R. Rolfes","doi":"10.1016/j.compstruct.2025.119585","DOIUrl":null,"url":null,"abstract":"<div><div>Delamination is a frequent and critical type of damage that occurs in composite structures under static and fatigue loading. This work presents a novel method to derive a nonlinear traction–separation law (TSL) for a cohesive zone model (CZM) used for delamination simulations. By solving an ordinary differential equation (ODE) resulting from the energy balance of the cohesive zone, a nonlinear TSL is directly derived from R-curves that were determined experimentally in standard quasi-static double cantilever beam (DCB) tests. A superimposed conventional bilinear TSL is required to match the initial energy release rate of the R-curves. This bilinear TSL is intended to model brittle fracture while the nonlinear part models the R-curve effects mainly caused by fiber bridging. In order to consider R-curve effects under fatigue loading conditions as well, an established fatigue CZM is embedded into both parts of the TSL using the same set of four required input parameters. The fatigue parameters are determined inversely by means of cyclic DCB tests. It is demonstrated that the numerical model is able to reproduce the force–displacement curves of the conducted quasi-static DCB tests with a higher accuracy, if the TSL is derived by the new method instead of the preexisting and commonly used J-integral approach. Furthermore, the model is able to reproduce experimental data from conducted cyclic DCB test with a limited number of input parameters which significantly decreases the effort of inverse parameter identification.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"373 ","pages":"Article 119585"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient derivation of a nonlinear cohesive bridging law for numerical delamination simulations under static and fatigue loading\",\"authors\":\"G. Hacker , G. Just , S. Scheffler , I. Koch , M. Gude , R. Rolfes\",\"doi\":\"10.1016/j.compstruct.2025.119585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Delamination is a frequent and critical type of damage that occurs in composite structures under static and fatigue loading. This work presents a novel method to derive a nonlinear traction–separation law (TSL) for a cohesive zone model (CZM) used for delamination simulations. By solving an ordinary differential equation (ODE) resulting from the energy balance of the cohesive zone, a nonlinear TSL is directly derived from R-curves that were determined experimentally in standard quasi-static double cantilever beam (DCB) tests. A superimposed conventional bilinear TSL is required to match the initial energy release rate of the R-curves. This bilinear TSL is intended to model brittle fracture while the nonlinear part models the R-curve effects mainly caused by fiber bridging. In order to consider R-curve effects under fatigue loading conditions as well, an established fatigue CZM is embedded into both parts of the TSL using the same set of four required input parameters. The fatigue parameters are determined inversely by means of cyclic DCB tests. It is demonstrated that the numerical model is able to reproduce the force–displacement curves of the conducted quasi-static DCB tests with a higher accuracy, if the TSL is derived by the new method instead of the preexisting and commonly used J-integral approach. Furthermore, the model is able to reproduce experimental data from conducted cyclic DCB test with a limited number of input parameters which significantly decreases the effort of inverse parameter identification.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"373 \",\"pages\":\"Article 119585\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325007500\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325007500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Efficient derivation of a nonlinear cohesive bridging law for numerical delamination simulations under static and fatigue loading
Delamination is a frequent and critical type of damage that occurs in composite structures under static and fatigue loading. This work presents a novel method to derive a nonlinear traction–separation law (TSL) for a cohesive zone model (CZM) used for delamination simulations. By solving an ordinary differential equation (ODE) resulting from the energy balance of the cohesive zone, a nonlinear TSL is directly derived from R-curves that were determined experimentally in standard quasi-static double cantilever beam (DCB) tests. A superimposed conventional bilinear TSL is required to match the initial energy release rate of the R-curves. This bilinear TSL is intended to model brittle fracture while the nonlinear part models the R-curve effects mainly caused by fiber bridging. In order to consider R-curve effects under fatigue loading conditions as well, an established fatigue CZM is embedded into both parts of the TSL using the same set of four required input parameters. The fatigue parameters are determined inversely by means of cyclic DCB tests. It is demonstrated that the numerical model is able to reproduce the force–displacement curves of the conducted quasi-static DCB tests with a higher accuracy, if the TSL is derived by the new method instead of the preexisting and commonly used J-integral approach. Furthermore, the model is able to reproduce experimental data from conducted cyclic DCB test with a limited number of input parameters which significantly decreases the effort of inverse parameter identification.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.