交互多尺度建模桥接锂-二氧化碳电池设计中的原子特性和电化学性能

IF 11 1区 工程技术 Q1 ENERGY & FUELS
Mohammed Lemaalem , Selva Chandrasekaran Selvaraj , Ilias Papailias , Naveen K. Dandu , Arash Namaeighasemi , Larry A. Curtiss , Amin Salehi-Khojin , Anh T. Ngo
{"title":"交互多尺度建模桥接锂-二氧化碳电池设计中的原子特性和电化学性能","authors":"Mohammed Lemaalem ,&nbsp;Selva Chandrasekaran Selvaraj ,&nbsp;Ilias Papailias ,&nbsp;Naveen K. Dandu ,&nbsp;Arash Namaeighasemi ,&nbsp;Larry A. Curtiss ,&nbsp;Amin Salehi-Khojin ,&nbsp;Anh T. Ngo","doi":"10.1016/j.apenergy.2025.126693","DOIUrl":null,"url":null,"abstract":"<div><div>Li-CO<sub>2</sub> batteries are promising energy storage systems due to their high theoretical energy density and CO<sub>2</sub> fixation capability, relying on reversible Li<sub>2</sub>CO<sub>3</sub>/C formation during discharge/charge cycles. We present a multiscale modeling framework integrating Density Functional Theory (DFT), Ab-Initio Molecular Dynamics (AIMD), classical Molecular Dynamics (MD), and Finite Element Analysis (FEA) to investigate atomic and cell-level properties. The considered Li-CO<sub>2</sub> battery consists of a lithium metal anode, an ionic liquid electrolyte, and a carbon cloth cathode with Sb<sub>0.67</sub>Bi<sub>1.33</sub>Te<sub>3</sub> catalyst. DFT and AIMD determined the electrical conductivities of Sb<sub>0.67</sub>Bi<sub>1.33</sub>Te<sub>3</sub> and Li<sub>2</sub>CO<sub>3</sub> using the Kubo–Greenwood formalism and studied the CO<sub>2</sub> reduction mechanism on the cathode catalyst. MD simulations calculated the CO<sub>2</sub> diffusion coefficient, Li<span><math><msup><mspace></mspace><mo>+</mo></msup></math></span> transference number, ionic conductivity, and Li<span><math><msup><mspace></mspace><mo>+</mo></msup></math></span> solvation structure. The FEA model, parameterized with atomistic simulation data, reproduced the available experimental voltage–capacity profile at 1 mA/cm<sup>2</sup> and revealed spatio-temporal variations in Li<sub>2</sub>CO<sub>3</sub>/C deposition, porosity, and CO<sub>2</sub> concentration dependence on discharge rates in the cathode. Accordingly, Li<sub>2</sub>CO<sub>3</sub> can form large and thin film deposits, leading to dispersed and local porosity changes at 0.1 mA/cm<sup>2</sup> and 1 mA/cm<sup>2</sup>, respectively. The capacity decreases exponentially from 81,570 mAh/g at 0.1 mA/cm<sup>2</sup> to 6200 mAh/g at 1 mA/cm<sup>2</sup>, due to pore clogging from excessive discharge product deposition that limits CO<sub>2</sub> transport to the cathode interior. Therefore, the performance of Li-CO<sub>2</sub> batteries can be improved by enhancing CO<sub>2</sub> transport, regulating Li<sub>2</sub>CO<sub>3</sub> deposition, and optimizing cathode architecture.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"401 ","pages":"Article 126693"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive multiscale modeling to bridge atomic properties and electrochemical performance in Li-CO2 battery design\",\"authors\":\"Mohammed Lemaalem ,&nbsp;Selva Chandrasekaran Selvaraj ,&nbsp;Ilias Papailias ,&nbsp;Naveen K. Dandu ,&nbsp;Arash Namaeighasemi ,&nbsp;Larry A. Curtiss ,&nbsp;Amin Salehi-Khojin ,&nbsp;Anh T. Ngo\",\"doi\":\"10.1016/j.apenergy.2025.126693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Li-CO<sub>2</sub> batteries are promising energy storage systems due to their high theoretical energy density and CO<sub>2</sub> fixation capability, relying on reversible Li<sub>2</sub>CO<sub>3</sub>/C formation during discharge/charge cycles. We present a multiscale modeling framework integrating Density Functional Theory (DFT), Ab-Initio Molecular Dynamics (AIMD), classical Molecular Dynamics (MD), and Finite Element Analysis (FEA) to investigate atomic and cell-level properties. The considered Li-CO<sub>2</sub> battery consists of a lithium metal anode, an ionic liquid electrolyte, and a carbon cloth cathode with Sb<sub>0.67</sub>Bi<sub>1.33</sub>Te<sub>3</sub> catalyst. DFT and AIMD determined the electrical conductivities of Sb<sub>0.67</sub>Bi<sub>1.33</sub>Te<sub>3</sub> and Li<sub>2</sub>CO<sub>3</sub> using the Kubo–Greenwood formalism and studied the CO<sub>2</sub> reduction mechanism on the cathode catalyst. MD simulations calculated the CO<sub>2</sub> diffusion coefficient, Li<span><math><msup><mspace></mspace><mo>+</mo></msup></math></span> transference number, ionic conductivity, and Li<span><math><msup><mspace></mspace><mo>+</mo></msup></math></span> solvation structure. The FEA model, parameterized with atomistic simulation data, reproduced the available experimental voltage–capacity profile at 1 mA/cm<sup>2</sup> and revealed spatio-temporal variations in Li<sub>2</sub>CO<sub>3</sub>/C deposition, porosity, and CO<sub>2</sub> concentration dependence on discharge rates in the cathode. Accordingly, Li<sub>2</sub>CO<sub>3</sub> can form large and thin film deposits, leading to dispersed and local porosity changes at 0.1 mA/cm<sup>2</sup> and 1 mA/cm<sup>2</sup>, respectively. The capacity decreases exponentially from 81,570 mAh/g at 0.1 mA/cm<sup>2</sup> to 6200 mAh/g at 1 mA/cm<sup>2</sup>, due to pore clogging from excessive discharge product deposition that limits CO<sub>2</sub> transport to the cathode interior. Therefore, the performance of Li-CO<sub>2</sub> batteries can be improved by enhancing CO<sub>2</sub> transport, regulating Li<sub>2</sub>CO<sub>3</sub> deposition, and optimizing cathode architecture.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"401 \",\"pages\":\"Article 126693\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925014230\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925014230","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

锂-二氧化碳电池是一种很有前途的储能系统,因为它具有很高的理论能量密度和二氧化碳固定能力,依赖于放电/充电循环过程中可逆的Li2CO3/C形成。我们提出了一个集成密度泛函理论(DFT)、Ab-Initio分子动力学(AIMD)、经典分子动力学(MD)和有限元分析(FEA)的多尺度建模框架,以研究原子和细胞水平的性质。所考虑的Li-CO2电池由锂金属阳极、离子液体电解质和碳布阴极(带有Sb0.67Bi1.33Te3催化剂)组成。DFT和AIMD采用Kubo-Greenwood形式确定了Sb0.67Bi1.33Te3和Li2CO3的电导率,并研究了阴极催化剂上CO2的还原机理。MD模拟计算了CO2扩散系数、Li+转移数、离子电导率和Li+溶剂化结构。以原子模拟数据为参数化的FEA模型再现了1ma /cm2下可用的实验电压-容量曲线,并揭示了阴极中Li2CO3/C沉积、孔隙度和CO2浓度随放电速率的时空变化。因此,Li2CO3可以形成大而薄的薄膜沉积,分别在0.1 mA/cm2和1 mA/cm2时导致分散和局部孔隙度的变化。在0.1 mA/cm2时,容量从81570 mAh/g呈指数下降到1ma /cm2时的6200 mAh/g,这是由于过度放电产物沉积造成的孔隙堵塞,限制了二氧化碳向阴极内部的运输。因此,可以通过增强CO2输运、调节Li2CO3沉积和优化阴极结构来提高锂-CO2电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive multiscale modeling to bridge atomic properties and electrochemical performance in Li-CO2 battery design
Li-CO2 batteries are promising energy storage systems due to their high theoretical energy density and CO2 fixation capability, relying on reversible Li2CO3/C formation during discharge/charge cycles. We present a multiscale modeling framework integrating Density Functional Theory (DFT), Ab-Initio Molecular Dynamics (AIMD), classical Molecular Dynamics (MD), and Finite Element Analysis (FEA) to investigate atomic and cell-level properties. The considered Li-CO2 battery consists of a lithium metal anode, an ionic liquid electrolyte, and a carbon cloth cathode with Sb0.67Bi1.33Te3 catalyst. DFT and AIMD determined the electrical conductivities of Sb0.67Bi1.33Te3 and Li2CO3 using the Kubo–Greenwood formalism and studied the CO2 reduction mechanism on the cathode catalyst. MD simulations calculated the CO2 diffusion coefficient, Li+ transference number, ionic conductivity, and Li+ solvation structure. The FEA model, parameterized with atomistic simulation data, reproduced the available experimental voltage–capacity profile at 1 mA/cm2 and revealed spatio-temporal variations in Li2CO3/C deposition, porosity, and CO2 concentration dependence on discharge rates in the cathode. Accordingly, Li2CO3 can form large and thin film deposits, leading to dispersed and local porosity changes at 0.1 mA/cm2 and 1 mA/cm2, respectively. The capacity decreases exponentially from 81,570 mAh/g at 0.1 mA/cm2 to 6200 mAh/g at 1 mA/cm2, due to pore clogging from excessive discharge product deposition that limits CO2 transport to the cathode interior. Therefore, the performance of Li-CO2 batteries can be improved by enhancing CO2 transport, regulating Li2CO3 deposition, and optimizing cathode architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信