Seyed Ehsan Ahmadi , Elnaz Kabir , Mohammad Fattahi , Mousa Marzband , Dongjun Li
{"title":"天气变化条件下可再生能源主导电网空间分辨电池储能系统的技术经济规划","authors":"Seyed Ehsan Ahmadi , Elnaz Kabir , Mohammad Fattahi , Mousa Marzband , Dongjun Li","doi":"10.1016/j.apenergy.2025.126706","DOIUrl":null,"url":null,"abstract":"<div><div>The ongoing energy transition is significantly increasing the share of renewable energy sources (RES) in power systems; however, their intermittency and variability pose substantial challenges, including load shedding and system congestion. This study examines the role of the battery storage system (BSS) in mitigating these challenges by balancing power supply and demand. We optimize the location, size, and type of batteries using a two-stage stochastic program, with the second stage involving hourly operational decisions over an entire year. Unlike previous research, we incorporate the comprehensive technical and economic characteristics of battery technologies. The New York State (NYS) power system, currently undergoing a significant shift towards increased RES generation, serves as our case study. Using available load and weather data from 1980 to 2019, we account for the uncertainty of both load and RES generation through a sample average approximation approach. Our findings indicate that BSS can reduce renewable curtailment by 34 % and load shedding by 21 %, contributing to a more resilient power system in achieving NYS 2030 energy targets. Furthermore, the cost of employing BSS for the reduction of load shedding and RES curtailment does not increase linearly with additional capacity, revealing a complex relationship between costs and renewable penetration. This study provides valuable insights for the strategic BSS deployment to achieve a cost-effective and reliable power system in the energy transition as well as the feasibility of the NYS 2030 energy targets.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"401 ","pages":"Article 126706"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno-economic planning of spatially-resolved battery storage systems in renewable-dominant grids under weather variability\",\"authors\":\"Seyed Ehsan Ahmadi , Elnaz Kabir , Mohammad Fattahi , Mousa Marzband , Dongjun Li\",\"doi\":\"10.1016/j.apenergy.2025.126706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ongoing energy transition is significantly increasing the share of renewable energy sources (RES) in power systems; however, their intermittency and variability pose substantial challenges, including load shedding and system congestion. This study examines the role of the battery storage system (BSS) in mitigating these challenges by balancing power supply and demand. We optimize the location, size, and type of batteries using a two-stage stochastic program, with the second stage involving hourly operational decisions over an entire year. Unlike previous research, we incorporate the comprehensive technical and economic characteristics of battery technologies. The New York State (NYS) power system, currently undergoing a significant shift towards increased RES generation, serves as our case study. Using available load and weather data from 1980 to 2019, we account for the uncertainty of both load and RES generation through a sample average approximation approach. Our findings indicate that BSS can reduce renewable curtailment by 34 % and load shedding by 21 %, contributing to a more resilient power system in achieving NYS 2030 energy targets. Furthermore, the cost of employing BSS for the reduction of load shedding and RES curtailment does not increase linearly with additional capacity, revealing a complex relationship between costs and renewable penetration. This study provides valuable insights for the strategic BSS deployment to achieve a cost-effective and reliable power system in the energy transition as well as the feasibility of the NYS 2030 energy targets.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"401 \",\"pages\":\"Article 126706\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925014369\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925014369","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Techno-economic planning of spatially-resolved battery storage systems in renewable-dominant grids under weather variability
The ongoing energy transition is significantly increasing the share of renewable energy sources (RES) in power systems; however, their intermittency and variability pose substantial challenges, including load shedding and system congestion. This study examines the role of the battery storage system (BSS) in mitigating these challenges by balancing power supply and demand. We optimize the location, size, and type of batteries using a two-stage stochastic program, with the second stage involving hourly operational decisions over an entire year. Unlike previous research, we incorporate the comprehensive technical and economic characteristics of battery technologies. The New York State (NYS) power system, currently undergoing a significant shift towards increased RES generation, serves as our case study. Using available load and weather data from 1980 to 2019, we account for the uncertainty of both load and RES generation through a sample average approximation approach. Our findings indicate that BSS can reduce renewable curtailment by 34 % and load shedding by 21 %, contributing to a more resilient power system in achieving NYS 2030 energy targets. Furthermore, the cost of employing BSS for the reduction of load shedding and RES curtailment does not increase linearly with additional capacity, revealing a complex relationship between costs and renewable penetration. This study provides valuable insights for the strategic BSS deployment to achieve a cost-effective and reliable power system in the energy transition as well as the feasibility of the NYS 2030 energy targets.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.