多孔冷却途径:通过实验研究揭示金属泡沫特性对传热动力学的影响

IF 5.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Abdul Qadeer Khoso , Atiq ur Rehman Fareedi , Hurmat Khan , Oronzio Manca , Bernardo Buonomo , Sergio Nardini
{"title":"多孔冷却途径:通过实验研究揭示金属泡沫特性对传热动力学的影响","authors":"Abdul Qadeer Khoso ,&nbsp;Atiq ur Rehman Fareedi ,&nbsp;Hurmat Khan ,&nbsp;Oronzio Manca ,&nbsp;Bernardo Buonomo ,&nbsp;Sergio Nardini","doi":"10.1016/j.ijheatmasstransfer.2025.127829","DOIUrl":null,"url":null,"abstract":"<div><div>With increasing miniaturization and rising power densities of electronic devices, robust thermal management strategies are inevitable for ensuring operational stability. In the pursuit of next-generation thermal management solutions for high-density electronics, impinging jet flow (IJF) systems integrated with metal foam (MF) have emerged as a promising technique. This study investigates the interplay between pore density (measured in pores per inch or PPI), foam thickness, and flow dynamics to identify configurations that deliver optimal thermal performance. By analyzing the coupled effects of these parameters, the work aims to enhance convective heat transfer while minimizing adverse pressure losses. The investigation utilizes several key performance metrics: the average Nusselt number (Nu_<sub>avg</sub>), Colburn j-factor, Performance Enhancement Coefficient (PEC), pumping power (PP), and dimensionless power number (Np), to comprehensively assess proficient heat transfer in conjunction with hydraulic efficiency. Results reveal that lower PPI structures and increased foam thickness significantly enhance heat transfer, as evidenced by elevated Nusselt numbers resulting from intensified flow interaction and turbulence. Conversely, substrate disc plates with lower thermal conductivity exhibit reduced cooling efficiency. An empirical correlation of the form <span><math><mrow><mi>N</mi><msub><mi>u</mi><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mi>R</mi><msup><mrow><mi>e</mi></mrow><msub><mi>c</mi><mn>2</mn></msub></msup></mrow></math></span> is proposed to capture the underlying heat transfer behavior. The findings offer actionable insights into the design of compact, high-performance cooling solutions tailored for next-generation electronic systems.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"255 ","pages":"Article 127829"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous pathways to chill: Unravelling the influence of metal foam characteristics on heat transfer dynamics through experimental investigation\",\"authors\":\"Abdul Qadeer Khoso ,&nbsp;Atiq ur Rehman Fareedi ,&nbsp;Hurmat Khan ,&nbsp;Oronzio Manca ,&nbsp;Bernardo Buonomo ,&nbsp;Sergio Nardini\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With increasing miniaturization and rising power densities of electronic devices, robust thermal management strategies are inevitable for ensuring operational stability. In the pursuit of next-generation thermal management solutions for high-density electronics, impinging jet flow (IJF) systems integrated with metal foam (MF) have emerged as a promising technique. This study investigates the interplay between pore density (measured in pores per inch or PPI), foam thickness, and flow dynamics to identify configurations that deliver optimal thermal performance. By analyzing the coupled effects of these parameters, the work aims to enhance convective heat transfer while minimizing adverse pressure losses. The investigation utilizes several key performance metrics: the average Nusselt number (Nu_<sub>avg</sub>), Colburn j-factor, Performance Enhancement Coefficient (PEC), pumping power (PP), and dimensionless power number (Np), to comprehensively assess proficient heat transfer in conjunction with hydraulic efficiency. Results reveal that lower PPI structures and increased foam thickness significantly enhance heat transfer, as evidenced by elevated Nusselt numbers resulting from intensified flow interaction and turbulence. Conversely, substrate disc plates with lower thermal conductivity exhibit reduced cooling efficiency. An empirical correlation of the form <span><math><mrow><mi>N</mi><msub><mi>u</mi><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mi>R</mi><msup><mrow><mi>e</mi></mrow><msub><mi>c</mi><mn>2</mn></msub></msup></mrow></math></span> is proposed to capture the underlying heat transfer behavior. The findings offer actionable insights into the design of compact, high-performance cooling solutions tailored for next-generation electronic systems.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"255 \",\"pages\":\"Article 127829\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025011640\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025011640","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着电子器件的小型化和功率密度的不断提高,为了确保运行稳定性,强大的热管理策略是不可避免的。在追求高密度电子产品的下一代热管理解决方案的过程中,与金属泡沫(MF)集成的撞击射流(IJF)系统已成为一种有前途的技术。本研究研究了孔隙密度(以每英寸孔隙数或PPI测量)、泡沫厚度和流动动力学之间的相互作用,以确定提供最佳热性能的配置。通过分析这些参数的耦合效应,本工作旨在增强对流换热,同时最小化不利压力损失。该研究利用了几个关键的性能指标:平均努塞尔数(Nu_avg)、科尔伯恩j系数、性能增强系数(PEC)、泵送功率(PP)和无量纲功率数(Np),以综合评估熟练的传热和液压效率。结果表明,较低的PPI结构和增加的泡沫厚度显著增强了换热,这一点可以从流动相互作用和湍流加剧导致的努塞尔数升高中得到证明。相反,热传导率较低的基板盘表现出较低的冷却效率。提出了Nuavg=c1Rec2形式的经验相关性来捕捉潜在的传热行为。这一发现为设计紧凑型、高性能的下一代电子系统冷却解决方案提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Porous pathways to chill: Unravelling the influence of metal foam characteristics on heat transfer dynamics through experimental investigation
With increasing miniaturization and rising power densities of electronic devices, robust thermal management strategies are inevitable for ensuring operational stability. In the pursuit of next-generation thermal management solutions for high-density electronics, impinging jet flow (IJF) systems integrated with metal foam (MF) have emerged as a promising technique. This study investigates the interplay between pore density (measured in pores per inch or PPI), foam thickness, and flow dynamics to identify configurations that deliver optimal thermal performance. By analyzing the coupled effects of these parameters, the work aims to enhance convective heat transfer while minimizing adverse pressure losses. The investigation utilizes several key performance metrics: the average Nusselt number (Nu_avg), Colburn j-factor, Performance Enhancement Coefficient (PEC), pumping power (PP), and dimensionless power number (Np), to comprehensively assess proficient heat transfer in conjunction with hydraulic efficiency. Results reveal that lower PPI structures and increased foam thickness significantly enhance heat transfer, as evidenced by elevated Nusselt numbers resulting from intensified flow interaction and turbulence. Conversely, substrate disc plates with lower thermal conductivity exhibit reduced cooling efficiency. An empirical correlation of the form Nuavg=c1Rec2 is proposed to capture the underlying heat transfer behavior. The findings offer actionable insights into the design of compact, high-performance cooling solutions tailored for next-generation electronic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信