农产品污染物多重侧流免疫分析的高通量和高灵敏度策略

IF 12 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Qinghuan Wu , Beibei Liu , A.M. Abd El-Aty , Xing Zhang , Linglong Chen , Guangyang Liu , Xiaomin Xu , Jing Wang , Maojun Jin , Qijun Wang , Xiaodong Huang , Ge Chen , Donghui Xu
{"title":"农产品污染物多重侧流免疫分析的高通量和高灵敏度策略","authors":"Qinghuan Wu ,&nbsp;Beibei Liu ,&nbsp;A.M. Abd El-Aty ,&nbsp;Xing Zhang ,&nbsp;Linglong Chen ,&nbsp;Guangyang Liu ,&nbsp;Xiaomin Xu ,&nbsp;Jing Wang ,&nbsp;Maojun Jin ,&nbsp;Qijun Wang ,&nbsp;Xiaodong Huang ,&nbsp;Ge Chen ,&nbsp;Donghui Xu","doi":"10.1016/j.trac.2025.118455","DOIUrl":null,"url":null,"abstract":"<div><div>Effective detection of agricultural pollutants in complex matrices is crucial for food safety. Lateral flow immunoassay (LFIA) is a vital onsite tool due to its simplicity, portability, low cost, and rapid detection. However, the efficiency and sensitivity of the conventional single-target detection mode limits its utility for detecting multiple contaminants in complex agricultural matrices. High-throughput and sensitive multiplex lateral flow immunoassay (MLFIA) technologies have become mainstream in agricultural product safety inspection. This review highlights four high-throughput formats of MLFIA—single-line multicolor, multiline, multiplex, and microarray methods—and their suitability for multianalyte detection. Furthermore, a range of high-sensitivity signal transduction methods, colorimetric, fluorescent, surface-enhanced Raman spectroscopy (SERS), and magnetic nanoparticle-based systems, have been evaluated for adaptability to complex scenarios. The limitations, challenges and future development trends of MLFIA are proposed, with the goal of providing useful references for researchers to promote the rapid development and practical application of MLFIA in multiple agricultural fields.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"193 ","pages":"Article 118455"},"PeriodicalIF":12.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The high-throughput and high-sensitivity strategies of multiplex lateral flow immunoassays for agricultural product contaminants\",\"authors\":\"Qinghuan Wu ,&nbsp;Beibei Liu ,&nbsp;A.M. Abd El-Aty ,&nbsp;Xing Zhang ,&nbsp;Linglong Chen ,&nbsp;Guangyang Liu ,&nbsp;Xiaomin Xu ,&nbsp;Jing Wang ,&nbsp;Maojun Jin ,&nbsp;Qijun Wang ,&nbsp;Xiaodong Huang ,&nbsp;Ge Chen ,&nbsp;Donghui Xu\",\"doi\":\"10.1016/j.trac.2025.118455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective detection of agricultural pollutants in complex matrices is crucial for food safety. Lateral flow immunoassay (LFIA) is a vital onsite tool due to its simplicity, portability, low cost, and rapid detection. However, the efficiency and sensitivity of the conventional single-target detection mode limits its utility for detecting multiple contaminants in complex agricultural matrices. High-throughput and sensitive multiplex lateral flow immunoassay (MLFIA) technologies have become mainstream in agricultural product safety inspection. This review highlights four high-throughput formats of MLFIA—single-line multicolor, multiline, multiplex, and microarray methods—and their suitability for multianalyte detection. Furthermore, a range of high-sensitivity signal transduction methods, colorimetric, fluorescent, surface-enhanced Raman spectroscopy (SERS), and magnetic nanoparticle-based systems, have been evaluated for adaptability to complex scenarios. The limitations, challenges and future development trends of MLFIA are proposed, with the goal of providing useful references for researchers to promote the rapid development and practical application of MLFIA in multiple agricultural fields.</div></div>\",\"PeriodicalId\":439,\"journal\":{\"name\":\"Trends in Analytical Chemistry\",\"volume\":\"193 \",\"pages\":\"Article 118455\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Analytical Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165993625003231\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993625003231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

复杂基质中农业污染物的有效检测对食品安全至关重要。横向流动免疫分析法(LFIA)因其简单、便携、低成本和快速检测而成为重要的现场工具。然而,传统的单目标检测模式的效率和灵敏度限制了其在复杂农业基质中检测多种污染物的实用性。高通量、高灵敏度的多重横向流动免疫分析技术已成为农产品安全检测的主流。本文综述了mlfia的四种高通量格式——单线多色、多线、多路和微阵列方法——以及它们对多分析物检测的适用性。此外,一系列高灵敏度信号转导方法,如比色法、荧光法、表面增强拉曼光谱(SERS)和磁性纳米粒子系统,已被评估为对复杂场景的适应性。提出了MLFIA的局限性、面临的挑战和未来的发展趋势,旨在为研究人员促进MLFIA在多个农业领域的快速发展和实际应用提供有益的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The high-throughput and high-sensitivity strategies of multiplex lateral flow immunoassays for agricultural product contaminants

The high-throughput and high-sensitivity strategies of multiplex lateral flow immunoassays for agricultural product contaminants
Effective detection of agricultural pollutants in complex matrices is crucial for food safety. Lateral flow immunoassay (LFIA) is a vital onsite tool due to its simplicity, portability, low cost, and rapid detection. However, the efficiency and sensitivity of the conventional single-target detection mode limits its utility for detecting multiple contaminants in complex agricultural matrices. High-throughput and sensitive multiplex lateral flow immunoassay (MLFIA) technologies have become mainstream in agricultural product safety inspection. This review highlights four high-throughput formats of MLFIA—single-line multicolor, multiline, multiplex, and microarray methods—and their suitability for multianalyte detection. Furthermore, a range of high-sensitivity signal transduction methods, colorimetric, fluorescent, surface-enhanced Raman spectroscopy (SERS), and magnetic nanoparticle-based systems, have been evaluated for adaptability to complex scenarios. The limitations, challenges and future development trends of MLFIA are proposed, with the goal of providing useful references for researchers to promote the rapid development and practical application of MLFIA in multiple agricultural fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Analytical Chemistry
Trends in Analytical Chemistry 化学-分析化学
CiteScore
20.00
自引率
4.60%
发文量
257
审稿时长
3.4 months
期刊介绍: TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信