在与幂零群具有相同指标集的a群上

IF 0.8 2区 数学 Q2 MATHEMATICS
Wei Zhou , Ilya Gorshkov
{"title":"在与幂零群具有相同指标集的a群上","authors":"Wei Zhou ,&nbsp;Ilya Gorshkov","doi":"10.1016/j.jalgebra.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite group and <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the set of conjugacy class sizes of <em>G</em>. For a prime <em>p</em>, let <span><math><mo>|</mo><mi>G</mi><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> be the highest <em>p</em>-power dividing some element of <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and define <span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>|</mo><mo>=</mo><msub><mrow><mi>Π</mi></mrow><mrow><mi>p</mi><mo>∈</mo><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>|</mo><mi>G</mi><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>. <em>G</em> is said to be an <em>A</em>-group if all its Sylow subgroups are abelian. We prove that if <em>G</em> is an <em>A</em>-group such that <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> contains <span><math><mo>|</mo><mi>G</mi><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> for every <span><math><mi>p</mi><mo>∈</mo><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> as well as <span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>|</mo></math></span>, then <em>G</em> must be abelian. This result gives a positive answer to a question posed by Camina and Camina in 2006.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 836-844"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On A-groups with the same index set as a nilpotent group\",\"authors\":\"Wei Zhou ,&nbsp;Ilya Gorshkov\",\"doi\":\"10.1016/j.jalgebra.2025.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite group and <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the set of conjugacy class sizes of <em>G</em>. For a prime <em>p</em>, let <span><math><mo>|</mo><mi>G</mi><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> be the highest <em>p</em>-power dividing some element of <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and define <span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>|</mo><mo>=</mo><msub><mrow><mi>Π</mi></mrow><mrow><mi>p</mi><mo>∈</mo><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>|</mo><mi>G</mi><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>. <em>G</em> is said to be an <em>A</em>-group if all its Sylow subgroups are abelian. We prove that if <em>G</em> is an <em>A</em>-group such that <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> contains <span><math><mo>|</mo><mi>G</mi><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> for every <span><math><mi>p</mi><mo>∈</mo><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> as well as <span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>|</mo></math></span>, then <em>G</em> must be abelian. This result gives a positive answer to a question posed by Camina and Camina in 2006.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 836-844\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005137\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005137","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有限群,N(G)是G的共轭类大小的集合。对于素数p,设|G||p是N(G)的某个元素的最高p幂,并定义|G||=Πp∈π(G)|G||p。如果G的所有Sylow子群都是阿贝尔群,则称其为a群。我们证明了如果G是a群,使得N(G)对于每一个p∈π(G)和|G||都包含|G||p,那么G一定是阿贝尔群。这一结果对Camina和Camina在2006年提出的问题给出了肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On A-groups with the same index set as a nilpotent group
Let G be a finite group and N(G) be the set of conjugacy class sizes of G. For a prime p, let |G||p be the highest p-power dividing some element of N(G) and define |G||=Πpπ(G)|G||p. G is said to be an A-group if all its Sylow subgroups are abelian. We prove that if G is an A-group such that N(G) contains |G||p for every pπ(G) as well as |G||, then G must be abelian. This result gives a positive answer to a question posed by Camina and Camina in 2006.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信