Yong Chan Cho , Shraddha Ganorkar , Lei Wang , Sangho Jeon , John Jonghyun Lee , Yun-Hee Lee , Geun Woo Lee
{"title":"难熔Mo, Nb和Ta纯金属元素的晶液界面自由能和热物理性质","authors":"Yong Chan Cho , Shraddha Ganorkar , Lei Wang , Sangho Jeon , John Jonghyun Lee , Yun-Hee Lee , Geun Woo Lee","doi":"10.1016/j.cap.2025.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>The crystal-liquid interfacial free energy (IFE) plays a crucial role in understanding crystal nucleation and growth phenomena across various scientific research fields. Measuring the IFE is very challenging under high-temperature environments, due to the volatility, reactivity, and contamination of molten metals that can result in ambiguous understanding of nucleation. It has been known that container-free techniques can overcome the experimental difficulties. In this study, we measure thermophysical parameters of the refractory metallic liquids (i.e., Nb, Mo, and Ta) and calculate their IFE. These results will be useful for understanding the fundamentals of nucleation and glass formation under high-temperature environment, as well as for designing new materials.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 151-157"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal-liquid interfacial free energy and thermophysical properties of refractory Mo, Nb and Ta pure metal elements\",\"authors\":\"Yong Chan Cho , Shraddha Ganorkar , Lei Wang , Sangho Jeon , John Jonghyun Lee , Yun-Hee Lee , Geun Woo Lee\",\"doi\":\"10.1016/j.cap.2025.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The crystal-liquid interfacial free energy (IFE) plays a crucial role in understanding crystal nucleation and growth phenomena across various scientific research fields. Measuring the IFE is very challenging under high-temperature environments, due to the volatility, reactivity, and contamination of molten metals that can result in ambiguous understanding of nucleation. It has been known that container-free techniques can overcome the experimental difficulties. In this study, we measure thermophysical parameters of the refractory metallic liquids (i.e., Nb, Mo, and Ta) and calculate their IFE. These results will be useful for understanding the fundamentals of nucleation and glass formation under high-temperature environment, as well as for designing new materials.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"80 \",\"pages\":\"Pages 151-157\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925001920\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001920","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Crystal-liquid interfacial free energy and thermophysical properties of refractory Mo, Nb and Ta pure metal elements
The crystal-liquid interfacial free energy (IFE) plays a crucial role in understanding crystal nucleation and growth phenomena across various scientific research fields. Measuring the IFE is very challenging under high-temperature environments, due to the volatility, reactivity, and contamination of molten metals that can result in ambiguous understanding of nucleation. It has been known that container-free techniques can overcome the experimental difficulties. In this study, we measure thermophysical parameters of the refractory metallic liquids (i.e., Nb, Mo, and Ta) and calculate their IFE. These results will be useful for understanding the fundamentals of nucleation and glass formation under high-temperature environment, as well as for designing new materials.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.