Mubashair Imran , Majid Khan , A. Qayyum , K. Ahmad , S. Ahmad , M. Kamran
{"title":"平行电极辉光放电的模拟及与实验结果的比较","authors":"Mubashair Imran , Majid Khan , A. Qayyum , K. Ahmad , S. Ahmad , M. Kamran","doi":"10.1016/j.cap.2025.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>This paper uses COMSOL Multiphysics simulations and experiments to provide insight into the plasma features of a parallel electrode DC glow discharge system. Nitrogen gas has been selected for plasma discharge due to its widespread use in plasma nitriding, which enhances the tribological properties of materials. The study looks at how DC power changes the important plasma parameters, like the electron temperature and the electron number density, while keeping the gas pressure the same. Additionally, the effect of varying gas-filled pressure was analyzed with fixed DC power. Experimental validation is carried out in a cylindrical shaped vacuum chamber with the same geometric configuration and input conditions. The comparison between simulated results and experimental outcomes shows a similar trend, although the magnitudes of simulated results are a little bit higher. This variation may be due to differences between theoretical modeling and actual plasma behavior. Based on these observations, the discharge system has been optimized for precise pressure and power conditions to improve its effectiveness in plasma nitriding applications. The findings contribute to better control and efficiency in plasma-based surface treatment processes.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 134-144"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulations of parallel electrode glow discharge and comparison with experimental results\",\"authors\":\"Mubashair Imran , Majid Khan , A. Qayyum , K. Ahmad , S. Ahmad , M. Kamran\",\"doi\":\"10.1016/j.cap.2025.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper uses COMSOL Multiphysics simulations and experiments to provide insight into the plasma features of a parallel electrode DC glow discharge system. Nitrogen gas has been selected for plasma discharge due to its widespread use in plasma nitriding, which enhances the tribological properties of materials. The study looks at how DC power changes the important plasma parameters, like the electron temperature and the electron number density, while keeping the gas pressure the same. Additionally, the effect of varying gas-filled pressure was analyzed with fixed DC power. Experimental validation is carried out in a cylindrical shaped vacuum chamber with the same geometric configuration and input conditions. The comparison between simulated results and experimental outcomes shows a similar trend, although the magnitudes of simulated results are a little bit higher. This variation may be due to differences between theoretical modeling and actual plasma behavior. Based on these observations, the discharge system has been optimized for precise pressure and power conditions to improve its effectiveness in plasma nitriding applications. The findings contribute to better control and efficiency in plasma-based surface treatment processes.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"80 \",\"pages\":\"Pages 134-144\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925001919\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001919","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulations of parallel electrode glow discharge and comparison with experimental results
This paper uses COMSOL Multiphysics simulations and experiments to provide insight into the plasma features of a parallel electrode DC glow discharge system. Nitrogen gas has been selected for plasma discharge due to its widespread use in plasma nitriding, which enhances the tribological properties of materials. The study looks at how DC power changes the important plasma parameters, like the electron temperature and the electron number density, while keeping the gas pressure the same. Additionally, the effect of varying gas-filled pressure was analyzed with fixed DC power. Experimental validation is carried out in a cylindrical shaped vacuum chamber with the same geometric configuration and input conditions. The comparison between simulated results and experimental outcomes shows a similar trend, although the magnitudes of simulated results are a little bit higher. This variation may be due to differences between theoretical modeling and actual plasma behavior. Based on these observations, the discharge system has been optimized for precise pressure and power conditions to improve its effectiveness in plasma nitriding applications. The findings contribute to better control and efficiency in plasma-based surface treatment processes.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.