混合纳米流体氧化铝和铜的有效化学反应强化传热的联合分析

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Naseer Khan , Muhammad Farooq , Akhtar Jan , Ebraheem Alzahrani , Wajid Ullah Jan
{"title":"混合纳米流体氧化铝和铜的有效化学反应强化传热的联合分析","authors":"Naseer Khan ,&nbsp;Muhammad Farooq ,&nbsp;Akhtar Jan ,&nbsp;Ebraheem Alzahrani ,&nbsp;Wajid Ullah Jan","doi":"10.1016/j.ijheatfluidflow.2025.110039","DOIUrl":null,"url":null,"abstract":"<div><div>The current study examines a hydrothermal model that accounts for the impacts of both homogeneous and heterogeneous chemical reactions on hybrid nanofluid flow between squeezing plates, Joule heating and viscous dissipation with the effect of nanoparticle concentration. Ethylene glycol with water was combined to create the base fluid. Alumina <span><math><mrow><mo>(</mo><mi>A</mi><mi>u</mi><mi>l</mi><mi>m</mi><mi>i</mi><mi>n</mi><mi>a</mi><mo>)</mo></mrow></math></span> and copper (Cu) nanoparticles were then dispersed into this base, forming the <span><math><mrow><mi>A</mi><mi>l</mi><mi>u</mi><mi>m</mi><mi>i</mi><mi>n</mi><mi>a</mi><mo>+</mo><mi>Cu</mi><mo>+</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span> hybrid nanofluid. A mathematical and analytical model that depicts fluid flow has been created. The system of governing equations has been simplified by invoking the similarity transformation. The resulting governing equations system is solved successfully with the help of BVP4c and homotopy analysis methods (HAM). We obtained the best agreement between the numerical and analytical results. A rise in the volume percentage of nanoparticles corresponds to an increase in the rate for heat transfer. The relationship between the heat transfer rate of hybrid nanofluids (HNF) and single nanofluids (SNF) is also investigated. Graphs are plotted to examine the impacts of physical parameters on velocity, temperature and nanoparticle concentration distributions. Skin friction coefficient, Nusselt and Sherwood numbers are analyzed numerically.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"117 ","pages":"Article 110039"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined analysis of hybrid nano-fluid alumina and copper with effective chemical reactions for enhanced heat transfer\",\"authors\":\"Naseer Khan ,&nbsp;Muhammad Farooq ,&nbsp;Akhtar Jan ,&nbsp;Ebraheem Alzahrani ,&nbsp;Wajid Ullah Jan\",\"doi\":\"10.1016/j.ijheatfluidflow.2025.110039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current study examines a hydrothermal model that accounts for the impacts of both homogeneous and heterogeneous chemical reactions on hybrid nanofluid flow between squeezing plates, Joule heating and viscous dissipation with the effect of nanoparticle concentration. Ethylene glycol with water was combined to create the base fluid. Alumina <span><math><mrow><mo>(</mo><mi>A</mi><mi>u</mi><mi>l</mi><mi>m</mi><mi>i</mi><mi>n</mi><mi>a</mi><mo>)</mo></mrow></math></span> and copper (Cu) nanoparticles were then dispersed into this base, forming the <span><math><mrow><mi>A</mi><mi>l</mi><mi>u</mi><mi>m</mi><mi>i</mi><mi>n</mi><mi>a</mi><mo>+</mo><mi>Cu</mi><mo>+</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span> hybrid nanofluid. A mathematical and analytical model that depicts fluid flow has been created. The system of governing equations has been simplified by invoking the similarity transformation. The resulting governing equations system is solved successfully with the help of BVP4c and homotopy analysis methods (HAM). We obtained the best agreement between the numerical and analytical results. A rise in the volume percentage of nanoparticles corresponds to an increase in the rate for heat transfer. The relationship between the heat transfer rate of hybrid nanofluids (HNF) and single nanofluids (SNF) is also investigated. Graphs are plotted to examine the impacts of physical parameters on velocity, temperature and nanoparticle concentration distributions. Skin friction coefficient, Nusselt and Sherwood numbers are analyzed numerically.</div></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"117 \",\"pages\":\"Article 110039\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X25002978\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25002978","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究考察了一个热液模型,该模型考虑了均匀和非均匀化学反应对混合纳米流体在挤压板之间流动、焦耳加热和粘性耗散的影响,以及纳米颗粒浓度的影响。乙二醇与水结合形成基础液。然后将氧化铝(Aulmina)和铜(Cu)纳米颗粒分散到该碱中,形成氧化铝+Cu+C2H6O2−H2O混合纳米流体。已经建立了一个描述流体流动的数学和分析模型。通过相似变换对控制方程组进行了简化。利用BVP4c和同伦分析方法(HAM)成功地求解了控制方程组。数值结果与分析结果吻合较好。纳米颗粒体积百分比的增加对应于传热速率的增加。研究了混合纳米流体(HNF)和单一纳米流体(SNF)的换热速率关系。绘制图形以检验物理参数对速度、温度和纳米颗粒浓度分布的影响。对表面摩擦系数、努塞尔数和舍伍德数进行了数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined analysis of hybrid nano-fluid alumina and copper with effective chemical reactions for enhanced heat transfer
The current study examines a hydrothermal model that accounts for the impacts of both homogeneous and heterogeneous chemical reactions on hybrid nanofluid flow between squeezing plates, Joule heating and viscous dissipation with the effect of nanoparticle concentration. Ethylene glycol with water was combined to create the base fluid. Alumina (Aulmina) and copper (Cu) nanoparticles were then dispersed into this base, forming the Alumina+Cu+C2H6O2H2O hybrid nanofluid. A mathematical and analytical model that depicts fluid flow has been created. The system of governing equations has been simplified by invoking the similarity transformation. The resulting governing equations system is solved successfully with the help of BVP4c and homotopy analysis methods (HAM). We obtained the best agreement between the numerical and analytical results. A rise in the volume percentage of nanoparticles corresponds to an increase in the rate for heat transfer. The relationship between the heat transfer rate of hybrid nanofluids (HNF) and single nanofluids (SNF) is also investigated. Graphs are plotted to examine the impacts of physical parameters on velocity, temperature and nanoparticle concentration distributions. Skin friction coefficient, Nusselt and Sherwood numbers are analyzed numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信