{"title":"塑料废物升级为先进碳材料:在能源和环境中的应用综述","authors":"Mehmet Melikoglu","doi":"10.1016/j.nxener.2025.100429","DOIUrl":null,"url":null,"abstract":"<div><div>This review highlights upcycling, a promising strategy transforming diverse plastic streams into high-value carbon-based materials. The escalating global accumulation of plastic waste, currently at over 400 million tonnes annually, demands a fundamental shift from a linear take-make-dispose model to a circular economy. The manuscript synthesizes advancements (2020–2025) in converting major plastic types: Polypropylene (PP), Polyethylene Terephthalate (PET), Polystyrene (PS), and Polyethylene (PE) into functional carbons like Graphene (GNs), Carbon Nanotubes (CNTs), Activated Carbons (ACs), Carbon Nanosheets (CNS), and Disordered Hard Carbon (HC). These materials show remarkable potential. In energy storage, they enhance supercapacitors and batteries. For catalysis, they serve as efficient electrocatalysts for the Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), and Oxygen Reduction Reaction (ORR), and aid in photocatalytic and Fenton-like degradation. They are also effective in environmental remediation via adsorption and electrochemical treatment and contribute to advanced material synthesis. Their integration into emerging technologies, including Perovskite Solar Cells (PSCs) and Triboelectric Nanogenerators (TENGs), expands their utility. Initial Life Cycle Assessment (LCA) studies confirm their environmental benefits, demonstrating reductions in climate change potential and human toxicity. Future research should prioritize precision material design, multi-functional hybrids (e.g., carbon integrated with metal oxides), and advanced in-situ characterization to understand structure-property relationships. Developing scalable, energy-efficient processes through techno-economic analysis and modeling is crucial. Diversifying applications and ensuring holistic sustainability via Social LCA (S-LCA) and policy frameworks will accelerate the transition to a sustainable-circular economy.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100429"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling plastic waste into advanced carbon materials: A comprehensive review of applications in energy and environment\",\"authors\":\"Mehmet Melikoglu\",\"doi\":\"10.1016/j.nxener.2025.100429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review highlights upcycling, a promising strategy transforming diverse plastic streams into high-value carbon-based materials. The escalating global accumulation of plastic waste, currently at over 400 million tonnes annually, demands a fundamental shift from a linear take-make-dispose model to a circular economy. The manuscript synthesizes advancements (2020–2025) in converting major plastic types: Polypropylene (PP), Polyethylene Terephthalate (PET), Polystyrene (PS), and Polyethylene (PE) into functional carbons like Graphene (GNs), Carbon Nanotubes (CNTs), Activated Carbons (ACs), Carbon Nanosheets (CNS), and Disordered Hard Carbon (HC). These materials show remarkable potential. In energy storage, they enhance supercapacitors and batteries. For catalysis, they serve as efficient electrocatalysts for the Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), and Oxygen Reduction Reaction (ORR), and aid in photocatalytic and Fenton-like degradation. They are also effective in environmental remediation via adsorption and electrochemical treatment and contribute to advanced material synthesis. Their integration into emerging technologies, including Perovskite Solar Cells (PSCs) and Triboelectric Nanogenerators (TENGs), expands their utility. Initial Life Cycle Assessment (LCA) studies confirm their environmental benefits, demonstrating reductions in climate change potential and human toxicity. Future research should prioritize precision material design, multi-functional hybrids (e.g., carbon integrated with metal oxides), and advanced in-situ characterization to understand structure-property relationships. Developing scalable, energy-efficient processes through techno-economic analysis and modeling is crucial. Diversifying applications and ensuring holistic sustainability via Social LCA (S-LCA) and policy frameworks will accelerate the transition to a sustainable-circular economy.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"9 \",\"pages\":\"Article 100429\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X25001929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upcycling plastic waste into advanced carbon materials: A comprehensive review of applications in energy and environment
This review highlights upcycling, a promising strategy transforming diverse plastic streams into high-value carbon-based materials. The escalating global accumulation of plastic waste, currently at over 400 million tonnes annually, demands a fundamental shift from a linear take-make-dispose model to a circular economy. The manuscript synthesizes advancements (2020–2025) in converting major plastic types: Polypropylene (PP), Polyethylene Terephthalate (PET), Polystyrene (PS), and Polyethylene (PE) into functional carbons like Graphene (GNs), Carbon Nanotubes (CNTs), Activated Carbons (ACs), Carbon Nanosheets (CNS), and Disordered Hard Carbon (HC). These materials show remarkable potential. In energy storage, they enhance supercapacitors and batteries. For catalysis, they serve as efficient electrocatalysts for the Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), and Oxygen Reduction Reaction (ORR), and aid in photocatalytic and Fenton-like degradation. They are also effective in environmental remediation via adsorption and electrochemical treatment and contribute to advanced material synthesis. Their integration into emerging technologies, including Perovskite Solar Cells (PSCs) and Triboelectric Nanogenerators (TENGs), expands their utility. Initial Life Cycle Assessment (LCA) studies confirm their environmental benefits, demonstrating reductions in climate change potential and human toxicity. Future research should prioritize precision material design, multi-functional hybrids (e.g., carbon integrated with metal oxides), and advanced in-situ characterization to understand structure-property relationships. Developing scalable, energy-efficient processes through techno-economic analysis and modeling is crucial. Diversifying applications and ensuring holistic sustainability via Social LCA (S-LCA) and policy frameworks will accelerate the transition to a sustainable-circular economy.