锂和钠离子在lifepo_4, LLZO和NASICON中的扩散:分子动力学和机器学习研究

Nour El Haq El Macouti , Mohamed El bouanounou , Abdelmajid Assila , El-Kebir Hlil , Yahia Boughaleb , Abdelowahed Hajjaji , Said Laasri
{"title":"锂和钠离子在lifepo_4, LLZO和NASICON中的扩散:分子动力学和机器学习研究","authors":"Nour El Haq El Macouti ,&nbsp;Mohamed El bouanounou ,&nbsp;Abdelmajid Assila ,&nbsp;El-Kebir Hlil ,&nbsp;Yahia Boughaleb ,&nbsp;Abdelowahed Hajjaji ,&nbsp;Said Laasri","doi":"10.1016/j.nxener.2025.100428","DOIUrl":null,"url":null,"abstract":"<div><div>Next-generation lithium- and sodium-ion battery development relies on solid-state electrolytes, offering enhanced safety, thermal stability, and high energy density. This research uses molecular dynamics (MD) simulations and machine learning (ML) to study ion diffusion in LiFePO₄, Li₇La₃Zr₂O₁₂ (LLZO), and Na₃Zr₂Si₂PO₁₂ (NASICON). MD simulations calculated 300 K diffusion coefficients (D) of 9.18 × 10⁻¹¹ m²/s for LiFePO₄, 4.00 × 10⁻¹² m²/s for LLZO, and 6.77 × 10⁻¹¹ m²/s for NASICON, with activation energies of 0.34 eV, 0.35 eV, and 0.31 eV, aligning with experimental ranges, though validation is limited and less accurate for LLZO due to a 2-order magnitude deviation. The ML model, trained on OBELiX data with temperature augmentation, systematically underpredicts diffusion coefficients (e.g., 3.84 × 10⁻¹¹ m²/s for LiFePO₄ vs. 9.18 × 10⁻¹¹ m²/s MD), likely due to overestimated ion densities. Despite a high R² of 0.996, the model indicates opportunities for further refinement. Our comparative evaluation demonstrates that sodium ion movement through NASICON frameworks exhibits similar characteristics to lithium-ion mobility within both olivine and garnet crystal structures. Our research results expand the current understanding of ion mobility pathways and provide numerical reference points that can guide future material refinement approaches and data-driven computational design of advanced solid electrolyte battery technologies.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100428"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium and sodium ion diffusion in LiFePO₄, LLZO, and NASICON: A molecular dynamics and machine learning study\",\"authors\":\"Nour El Haq El Macouti ,&nbsp;Mohamed El bouanounou ,&nbsp;Abdelmajid Assila ,&nbsp;El-Kebir Hlil ,&nbsp;Yahia Boughaleb ,&nbsp;Abdelowahed Hajjaji ,&nbsp;Said Laasri\",\"doi\":\"10.1016/j.nxener.2025.100428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Next-generation lithium- and sodium-ion battery development relies on solid-state electrolytes, offering enhanced safety, thermal stability, and high energy density. This research uses molecular dynamics (MD) simulations and machine learning (ML) to study ion diffusion in LiFePO₄, Li₇La₃Zr₂O₁₂ (LLZO), and Na₃Zr₂Si₂PO₁₂ (NASICON). MD simulations calculated 300 K diffusion coefficients (D) of 9.18 × 10⁻¹¹ m²/s for LiFePO₄, 4.00 × 10⁻¹² m²/s for LLZO, and 6.77 × 10⁻¹¹ m²/s for NASICON, with activation energies of 0.34 eV, 0.35 eV, and 0.31 eV, aligning with experimental ranges, though validation is limited and less accurate for LLZO due to a 2-order magnitude deviation. The ML model, trained on OBELiX data with temperature augmentation, systematically underpredicts diffusion coefficients (e.g., 3.84 × 10⁻¹¹ m²/s for LiFePO₄ vs. 9.18 × 10⁻¹¹ m²/s MD), likely due to overestimated ion densities. Despite a high R² of 0.996, the model indicates opportunities for further refinement. Our comparative evaluation demonstrates that sodium ion movement through NASICON frameworks exhibits similar characteristics to lithium-ion mobility within both olivine and garnet crystal structures. Our research results expand the current understanding of ion mobility pathways and provide numerical reference points that can guide future material refinement approaches and data-driven computational design of advanced solid electrolyte battery technologies.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"9 \",\"pages\":\"Article 100428\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X25001917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代锂和钠离子电池的发展依赖于固态电解质,提供更高的安全性、热稳定性和高能量密度。该研究使用分子动力学(MD)模拟和机器学习(ML)来研究LiFePO₄、Li₇La₃Zr₂O₁₂(LLZO)和Na₃Zr₂Si₂PO₁₂(NASICON)中的离子扩散。MD模拟计算出300 K扩散系数(D), LiFePO₄为9.18 × 10⁻¹¹m²/s, LLZO为4.00 × 10⁻¹m²/s, NASICON为6.77 × 10⁻¹m²/s,活化能为0.34 eV, 0.35 eV和0.31 eV,与实验范围一致,尽管验证有限,LLZO由于2个量级的偏差而不太准确。在OBELiX数据上训练的ML模型,在温度增加的情况下,系统地低估了扩散系数(例如,LiFePO₄为3.84 × 10⁻¹¹m²/s vs. 9.18 × 10⁻¹m²/s MD),可能是由于高估了离子密度。尽管R²为0.996,但该模型表明有进一步改进的机会。我们的比较评估表明,钠离子在NASICON框架中的移动与锂离子在橄榄石和石榴石晶体结构中的移动具有相似的特征。我们的研究结果扩展了目前对离子迁移途径的理解,并提供了数值参考点,可以指导未来的材料改进方法和先进固体电解质电池技术的数据驱动计算设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium and sodium ion diffusion in LiFePO₄, LLZO, and NASICON: A molecular dynamics and machine learning study
Next-generation lithium- and sodium-ion battery development relies on solid-state electrolytes, offering enhanced safety, thermal stability, and high energy density. This research uses molecular dynamics (MD) simulations and machine learning (ML) to study ion diffusion in LiFePO₄, Li₇La₃Zr₂O₁₂ (LLZO), and Na₃Zr₂Si₂PO₁₂ (NASICON). MD simulations calculated 300 K diffusion coefficients (D) of 9.18 × 10⁻¹¹ m²/s for LiFePO₄, 4.00 × 10⁻¹² m²/s for LLZO, and 6.77 × 10⁻¹¹ m²/s for NASICON, with activation energies of 0.34 eV, 0.35 eV, and 0.31 eV, aligning with experimental ranges, though validation is limited and less accurate for LLZO due to a 2-order magnitude deviation. The ML model, trained on OBELiX data with temperature augmentation, systematically underpredicts diffusion coefficients (e.g., 3.84 × 10⁻¹¹ m²/s for LiFePO₄ vs. 9.18 × 10⁻¹¹ m²/s MD), likely due to overestimated ion densities. Despite a high R² of 0.996, the model indicates opportunities for further refinement. Our comparative evaluation demonstrates that sodium ion movement through NASICON frameworks exhibits similar characteristics to lithium-ion mobility within both olivine and garnet crystal structures. Our research results expand the current understanding of ion mobility pathways and provide numerical reference points that can guide future material refinement approaches and data-driven computational design of advanced solid electrolyte battery technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信