Sharief Deshmukh , Nasser Bin Turki , Hemangi Madhusudan Shah , Gabriel-Eduard Vîlcu
{"title":"里奇几乎孤子的一些基本性质","authors":"Sharief Deshmukh , Nasser Bin Turki , Hemangi Madhusudan Shah , Gabriel-Eduard Vîlcu","doi":"10.1016/j.geomphys.2025.105644","DOIUrl":null,"url":null,"abstract":"<div><div>Ricci solitons are stationary solutions of a famous PDE for Riemannian metrics, known under the name of Ricci flow equation. An almost Ricci soliton is a remarkable generalization of Ricci solitons by allowing the soliton constant in Ricci flow equation to be a smooth function. In the present paper, we focuss our study on the most important class of almost Ricci solitons, namely gradient Ricci almost solitons <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with potential function <em>σ</em> and associated function <em>f</em>, abbreviated as <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>. On a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, these two functions <em>σ</em> and <em>f</em> together with scalar curvature <em>τ</em> play a significant role. Among the basic properties of a connected <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, it has been observed that there exists a smooth function <em>δ</em> called the connector of the <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> as it connects the gradients of the potential function <em>σ</em> and the associated function <em>f</em>, respectively. In our first result it is shown that a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <em>δ</em> gives a generalized soliton, thus establishing an unexpected duality. In our second result, we show that a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <span><math><mi>δ</mi><mo>=</mo><mo>−</mo><mi>c</mi></math></span>, for a positive constant <em>c</em>, and a suitable lower bound on the integral of the Ricci curvature <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> is isometric to the <em>n</em>-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> and the converse too is shown to hold. In the third result it is established that a complete and simply connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature, with a suitable lower bound on <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> and the vector ∇<em>σ</em> being eigenvector of the Hessian operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span> with an appropriate eigenvalue, gives a characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>. In our final result, we consider a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature and ask the associated function <em>f</em> to satisfy a Poison equation to get yet other characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105644"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some basic properties of Ricci almost solitons\",\"authors\":\"Sharief Deshmukh , Nasser Bin Turki , Hemangi Madhusudan Shah , Gabriel-Eduard Vîlcu\",\"doi\":\"10.1016/j.geomphys.2025.105644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ricci solitons are stationary solutions of a famous PDE for Riemannian metrics, known under the name of Ricci flow equation. An almost Ricci soliton is a remarkable generalization of Ricci solitons by allowing the soliton constant in Ricci flow equation to be a smooth function. In the present paper, we focuss our study on the most important class of almost Ricci solitons, namely gradient Ricci almost solitons <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with potential function <em>σ</em> and associated function <em>f</em>, abbreviated as <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>. On a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, these two functions <em>σ</em> and <em>f</em> together with scalar curvature <em>τ</em> play a significant role. Among the basic properties of a connected <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, it has been observed that there exists a smooth function <em>δ</em> called the connector of the <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> as it connects the gradients of the potential function <em>σ</em> and the associated function <em>f</em>, respectively. In our first result it is shown that a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <em>δ</em> gives a generalized soliton, thus establishing an unexpected duality. In our second result, we show that a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <span><math><mi>δ</mi><mo>=</mo><mo>−</mo><mi>c</mi></math></span>, for a positive constant <em>c</em>, and a suitable lower bound on the integral of the Ricci curvature <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> is isometric to the <em>n</em>-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> and the converse too is shown to hold. In the third result it is established that a complete and simply connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature, with a suitable lower bound on <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> and the vector ∇<em>σ</em> being eigenvector of the Hessian operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span> with an appropriate eigenvalue, gives a characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>. In our final result, we consider a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature and ask the associated function <em>f</em> to satisfy a Poison equation to get yet other characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"217 \",\"pages\":\"Article 105644\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025002293\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002293","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ricci solitons are stationary solutions of a famous PDE for Riemannian metrics, known under the name of Ricci flow equation. An almost Ricci soliton is a remarkable generalization of Ricci solitons by allowing the soliton constant in Ricci flow equation to be a smooth function. In the present paper, we focuss our study on the most important class of almost Ricci solitons, namely gradient Ricci almost solitons with potential function σ and associated function f, abbreviated as GRRAS . On a nontrivial GRRAS , these two functions σ and f together with scalar curvature τ play a significant role. Among the basic properties of a connected GRRAS , it has been observed that there exists a smooth function δ called the connector of the GRRAS as it connects the gradients of the potential function σ and the associated function f, respectively. In our first result it is shown that a nontrivial GRRAS with connector δ gives a generalized soliton, thus establishing an unexpected duality. In our second result, we show that a compact and connected nontrivial GRRAS with connector , for a positive constant c, and a suitable lower bound on the integral of the Ricci curvature is isometric to the n-sphere and the converse too is shown to hold. In the third result it is established that a complete and simply connected nontrivial GRRAS of positive scalar curvature, with a suitable lower bound on and the vector ∇σ being eigenvector of the Hessian operator with an appropriate eigenvalue, gives a characterization of . In our final result, we consider a compact and connected nontrivial GRRAS of positive scalar curvature and ask the associated function f to satisfy a Poison equation to get yet other characterization of .
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity