里奇几乎孤子的一些基本性质

IF 1.2 3区 数学 Q1 MATHEMATICS
Sharief Deshmukh , Nasser Bin Turki , Hemangi Madhusudan Shah , Gabriel-Eduard Vîlcu
{"title":"里奇几乎孤子的一些基本性质","authors":"Sharief Deshmukh ,&nbsp;Nasser Bin Turki ,&nbsp;Hemangi Madhusudan Shah ,&nbsp;Gabriel-Eduard Vîlcu","doi":"10.1016/j.geomphys.2025.105644","DOIUrl":null,"url":null,"abstract":"<div><div>Ricci solitons are stationary solutions of a famous PDE for Riemannian metrics, known under the name of Ricci flow equation. An almost Ricci soliton is a remarkable generalization of Ricci solitons by allowing the soliton constant in Ricci flow equation to be a smooth function. In the present paper, we focuss our study on the most important class of almost Ricci solitons, namely gradient Ricci almost solitons <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with potential function <em>σ</em> and associated function <em>f</em>, abbreviated as <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>. On a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, these two functions <em>σ</em> and <em>f</em> together with scalar curvature <em>τ</em> play a significant role. Among the basic properties of a connected <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, it has been observed that there exists a smooth function <em>δ</em> called the connector of the <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> as it connects the gradients of the potential function <em>σ</em> and the associated function <em>f</em>, respectively. In our first result it is shown that a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <em>δ</em> gives a generalized soliton, thus establishing an unexpected duality. In our second result, we show that a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <span><math><mi>δ</mi><mo>=</mo><mo>−</mo><mi>c</mi></math></span>, for a positive constant <em>c</em>, and a suitable lower bound on the integral of the Ricci curvature <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> is isometric to the <em>n</em>-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> and the converse too is shown to hold. In the third result it is established that a complete and simply connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature, with a suitable lower bound on <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> and the vector ∇<em>σ</em> being eigenvector of the Hessian operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span> with an appropriate eigenvalue, gives a characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>. In our final result, we consider a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature and ask the associated function <em>f</em> to satisfy a Poison equation to get yet other characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105644"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some basic properties of Ricci almost solitons\",\"authors\":\"Sharief Deshmukh ,&nbsp;Nasser Bin Turki ,&nbsp;Hemangi Madhusudan Shah ,&nbsp;Gabriel-Eduard Vîlcu\",\"doi\":\"10.1016/j.geomphys.2025.105644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ricci solitons are stationary solutions of a famous PDE for Riemannian metrics, known under the name of Ricci flow equation. An almost Ricci soliton is a remarkable generalization of Ricci solitons by allowing the soliton constant in Ricci flow equation to be a smooth function. In the present paper, we focuss our study on the most important class of almost Ricci solitons, namely gradient Ricci almost solitons <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with potential function <em>σ</em> and associated function <em>f</em>, abbreviated as <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>. On a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, these two functions <em>σ</em> and <em>f</em> together with scalar curvature <em>τ</em> play a significant role. Among the basic properties of a connected <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span>, it has been observed that there exists a smooth function <em>δ</em> called the connector of the <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> as it connects the gradients of the potential function <em>σ</em> and the associated function <em>f</em>, respectively. In our first result it is shown that a nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <em>δ</em> gives a generalized soliton, thus establishing an unexpected duality. In our second result, we show that a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> with connector <span><math><mi>δ</mi><mo>=</mo><mo>−</mo><mi>c</mi></math></span>, for a positive constant <em>c</em>, and a suitable lower bound on the integral of the Ricci curvature <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> is isometric to the <em>n</em>-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> and the converse too is shown to hold. In the third result it is established that a complete and simply connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature, with a suitable lower bound on <span><math><mi>R</mi><mi>i</mi><mi>c</mi><mrow><mo>(</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>)</mo></mrow></math></span> and the vector ∇<em>σ</em> being eigenvector of the Hessian operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span> with an appropriate eigenvalue, gives a characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>. In our final result, we consider a compact and connected nontrivial <em>GRRAS</em> <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>∇</mi><mi>σ</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> of positive scalar curvature and ask the associated function <em>f</em> to satisfy a Poison equation to get yet other characterization of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"217 \",\"pages\":\"Article 105644\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025002293\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002293","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Ricci孤子是著名的黎曼度量偏微分方程的平稳解,称为Ricci流方程。几乎里奇孤子是里奇孤子的一个显著推广,它允许里奇流方程中的孤子常数是一个光滑函数。本文重点研究了一类最重要的几乎Ricci孤子,即具有势函数σ和关联函数f的梯度Ricci几乎孤子(Mn,g,∇σ,f),简称gras (Mn,g,∇σ,f)。在非平凡gras (Mn,g,∇σ,f)上,这两个函数σ和f与标量曲率τ一起发挥重要作用。在连通GRRAS (Mn,g,∇σ,f)的基本性质中,我们观察到存在一个平滑函数δ,称为GRRAS (Mn,g,∇σ,f)的连接点,因为它分别连接了势函数σ和相关函数f的梯度。在我们的第一个结果中,证明了带接头δ的非平凡gras (Mn,g,∇σ,f)给出了一个广义孤子,从而建立了一个意想不到的对偶性。在我们的第二个结果中,我们证明了一个紧致且连通的非平凡gras (Mn,g,∇σ,f),对于正常数c,以及里奇曲率积分Ric(∇σ,∇σ)的合适下界与n球Sn(c)是等距的,反之也成立。在第三个结果中,建立了具有正标量曲率的完备单连通非平凡gras (Mn,g,∇σ,f),在Ric(∇σ,∇σ)上有一个合适的下界,并且向量∇σ是具有合适特征值的Hessian算子Hσ的特征向量,给出了Sn(c)的刻划。在我们的最终结果中,我们考虑了一个正标量曲率的紧接非平凡gras (Mn,g,∇σ,f),并要求相关函数f满足Poison方程以得到Sn(c)的其他表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some basic properties of Ricci almost solitons
Ricci solitons are stationary solutions of a famous PDE for Riemannian metrics, known under the name of Ricci flow equation. An almost Ricci soliton is a remarkable generalization of Ricci solitons by allowing the soliton constant in Ricci flow equation to be a smooth function. In the present paper, we focuss our study on the most important class of almost Ricci solitons, namely gradient Ricci almost solitons (Mn,g,σ,f) with potential function σ and associated function f, abbreviated as GRRAS (Mn,g,σ,f). On a nontrivial GRRAS (Mn,g,σ,f), these two functions σ and f together with scalar curvature τ play a significant role. Among the basic properties of a connected GRRAS (Mn,g,σ,f), it has been observed that there exists a smooth function δ called the connector of the GRRAS (Mn,g,σ,f) as it connects the gradients of the potential function σ and the associated function f, respectively. In our first result it is shown that a nontrivial GRRAS (Mn,g,σ,f) with connector δ gives a generalized soliton, thus establishing an unexpected duality. In our second result, we show that a compact and connected nontrivial GRRAS (Mn,g,σ,f) with connector δ=c, for a positive constant c, and a suitable lower bound on the integral of the Ricci curvature Ric(σ,σ) is isometric to the n-sphere Sn(c) and the converse too is shown to hold. In the third result it is established that a complete and simply connected nontrivial GRRAS (Mn,g,σ,f) of positive scalar curvature, with a suitable lower bound on Ric(σ,σ) and the vector ∇σ being eigenvector of the Hessian operator Hσ with an appropriate eigenvalue, gives a characterization of Sn(c). In our final result, we consider a compact and connected nontrivial GRRAS (Mn,g,σ,f) of positive scalar curvature and ask the associated function f to satisfy a Poison equation to get yet other characterization of Sn(c).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信