{"title":"用非线性函数对一个集合的象进行内外逼近","authors":"Maël Godard , Luc Jaulin , Damien Massé","doi":"10.1016/j.ijar.2025.109574","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an original method to compute an inner and an outer approximation of the image <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of a subset <span><math><mi>X</mi></math></span> of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<em>e.g.</em>, <span><math><mi>X</mi></math></span> is the unit ball) by a smooth nonlinear function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A boundary approach is proposed. More precisely, the boundary <span><math><mo>∂</mo><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> will be covered by parallelepipeds in order to get an accurate enclosure of <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109574"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inner and outer approximation of the image of a set by a nonlinear function\",\"authors\":\"Maël Godard , Luc Jaulin , Damien Massé\",\"doi\":\"10.1016/j.ijar.2025.109574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes an original method to compute an inner and an outer approximation of the image <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of a subset <span><math><mi>X</mi></math></span> of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<em>e.g.</em>, <span><math><mi>X</mi></math></span> is the unit ball) by a smooth nonlinear function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A boundary approach is proposed. More precisely, the boundary <span><math><mo>∂</mo><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> will be covered by parallelepipeds in order to get an accurate enclosure of <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"187 \",\"pages\":\"Article 109574\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25002154\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25002154","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Inner and outer approximation of the image of a set by a nonlinear function
This paper proposes an original method to compute an inner and an outer approximation of the image of a subset of (e.g., is the unit ball) by a smooth nonlinear function . A boundary approach is proposed. More precisely, the boundary will be covered by parallelepipeds in order to get an accurate enclosure of .
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.