钙钛矿量子点带隙定量调控与锂硫电池吸附催化性能的构效关系

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Renjing Duan, , , Xiaoshi Lang*, , , Lan Li, , , Tingting Qu, , , Jianbin Li, , , Chuangang Yao, , and , Kedi Cai*, 
{"title":"钙钛矿量子点带隙定量调控与锂硫电池吸附催化性能的构效关系","authors":"Renjing Duan,&nbsp;, ,&nbsp;Xiaoshi Lang*,&nbsp;, ,&nbsp;Lan Li,&nbsp;, ,&nbsp;Tingting Qu,&nbsp;, ,&nbsp;Jianbin Li,&nbsp;, ,&nbsp;Chuangang Yao,&nbsp;, and ,&nbsp;Kedi Cai*,&nbsp;","doi":"10.1021/acssuschemeng.5c05919","DOIUrl":null,"url":null,"abstract":"<p >The commercialization of lithium–sulfur batteries is limited by the shuttle effect of lithium polysulfides (LiPSs) and sluggish conversion kinetics. Perovskite quantum dots (PQDs) with their precisely tunable band gap (<i>E</i><sub>g</sub>) can provide a novel pathway for regulating the performance of catalytic systems in lithium–sulfur batteries. In this study, the band gap width of CsPbCl<sub>3–<i>x</i></sub>Br<sub><i>x</i></sub> quantum dots is adjusted by controlling the doping amount of Br<sup>–</sup>, and the PTI-CsPbCl<sub>3–<i>x</i></sub>Br<sub><i>x</i></sub> composite is constructed by combining them with polyaniline-modified TiO<sub>2</sub> (PTI). Electrochemical tests and density of states calculations confirm that the material achieves optimal adsorption–catalytic performance for LiPSs when <i>E</i><sub>g</sub> is regulated to 1.47 eV. At this point, the interfacial built-in electric field strength of the composite can reach 1.72 V, and the reaction activation energy decreases to 0.087 eV with a lower d-band center (2.10 eV) and a narrower d-p energy gap (3.29 eV). These characteristics collectively promote the conversion kinetics between active sites and LiPSs, as well as the deposition/decomposition process of Li<sub>2</sub>S. In addition, the PTI-CsPbCl<sub>2</sub>Br<sub>1</sub>/S composite cathode based on this optimized band gap system exhibits an average capacity decay rate of only 0.077% per cycle at 0.5 C under harsh operating conditions of lean electrolyte (5 μL·mg<sup>–1</sup>) and high sulfur loading (6 mg·cm<sup>–2</sup>).</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 37","pages":"15547–15561"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure–Activity Relationship between Quantitative Regulation of Perovskite Quantum Dot Band Gaps and Adsorption–Catalytic Performance in Lithium–Sulfur Batteries\",\"authors\":\"Renjing Duan,&nbsp;, ,&nbsp;Xiaoshi Lang*,&nbsp;, ,&nbsp;Lan Li,&nbsp;, ,&nbsp;Tingting Qu,&nbsp;, ,&nbsp;Jianbin Li,&nbsp;, ,&nbsp;Chuangang Yao,&nbsp;, and ,&nbsp;Kedi Cai*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c05919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The commercialization of lithium–sulfur batteries is limited by the shuttle effect of lithium polysulfides (LiPSs) and sluggish conversion kinetics. Perovskite quantum dots (PQDs) with their precisely tunable band gap (<i>E</i><sub>g</sub>) can provide a novel pathway for regulating the performance of catalytic systems in lithium–sulfur batteries. In this study, the band gap width of CsPbCl<sub>3–<i>x</i></sub>Br<sub><i>x</i></sub> quantum dots is adjusted by controlling the doping amount of Br<sup>–</sup>, and the PTI-CsPbCl<sub>3–<i>x</i></sub>Br<sub><i>x</i></sub> composite is constructed by combining them with polyaniline-modified TiO<sub>2</sub> (PTI). Electrochemical tests and density of states calculations confirm that the material achieves optimal adsorption–catalytic performance for LiPSs when <i>E</i><sub>g</sub> is regulated to 1.47 eV. At this point, the interfacial built-in electric field strength of the composite can reach 1.72 V, and the reaction activation energy decreases to 0.087 eV with a lower d-band center (2.10 eV) and a narrower d-p energy gap (3.29 eV). These characteristics collectively promote the conversion kinetics between active sites and LiPSs, as well as the deposition/decomposition process of Li<sub>2</sub>S. In addition, the PTI-CsPbCl<sub>2</sub>Br<sub>1</sub>/S composite cathode based on this optimized band gap system exhibits an average capacity decay rate of only 0.077% per cycle at 0.5 C under harsh operating conditions of lean electrolyte (5 μL·mg<sup>–1</sup>) and high sulfur loading (6 mg·cm<sup>–2</sup>).</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 37\",\"pages\":\"15547–15561\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c05919\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c05919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池的商业化受到多硫化物锂(LiPSs)的穿梭效应和缓慢转化动力学的限制。具有精确可调带隙(Eg)的钙钛矿量子点(PQDs)可以为调节锂硫电池催化系统的性能提供一种新的途径。本研究通过控制Br -的掺杂量来调节CsPbCl3-xBrx量子点的带隙宽度,并将其与聚苯胺修饰的TiO2 (PTI)结合构建PTI- CsPbCl3-xBrx复合材料。电化学测试和态密度计算证实,当Eg调节到1.47 eV时,材料对LiPSs的吸附催化性能达到最佳。此时,复合材料界面内嵌电场强度可达1.72 V,反应活化能降至0.087 eV, d带中心较低(2.10 eV), d-p能隙较窄(3.29 eV)。这些特征共同促进了活性位点与LiPSs之间的转化动力学,以及Li2S的沉积/分解过程。此外,在贫电解质(5 μL·mg - 1)和高硫负载(6 mg·cm-2)的恶劣工作条件下,基于该优化带隙体系的PTI-CsPbCl2Br1/S复合阴极在0.5 C下的平均容量衰减率仅为0.077% /循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure–Activity Relationship between Quantitative Regulation of Perovskite Quantum Dot Band Gaps and Adsorption–Catalytic Performance in Lithium–Sulfur Batteries

Structure–Activity Relationship between Quantitative Regulation of Perovskite Quantum Dot Band Gaps and Adsorption–Catalytic Performance in Lithium–Sulfur Batteries

The commercialization of lithium–sulfur batteries is limited by the shuttle effect of lithium polysulfides (LiPSs) and sluggish conversion kinetics. Perovskite quantum dots (PQDs) with their precisely tunable band gap (Eg) can provide a novel pathway for regulating the performance of catalytic systems in lithium–sulfur batteries. In this study, the band gap width of CsPbCl3–xBrx quantum dots is adjusted by controlling the doping amount of Br, and the PTI-CsPbCl3–xBrx composite is constructed by combining them with polyaniline-modified TiO2 (PTI). Electrochemical tests and density of states calculations confirm that the material achieves optimal adsorption–catalytic performance for LiPSs when Eg is regulated to 1.47 eV. At this point, the interfacial built-in electric field strength of the composite can reach 1.72 V, and the reaction activation energy decreases to 0.087 eV with a lower d-band center (2.10 eV) and a narrower d-p energy gap (3.29 eV). These characteristics collectively promote the conversion kinetics between active sites and LiPSs, as well as the deposition/decomposition process of Li2S. In addition, the PTI-CsPbCl2Br1/S composite cathode based on this optimized band gap system exhibits an average capacity decay rate of only 0.077% per cycle at 0.5 C under harsh operating conditions of lean electrolyte (5 μL·mg–1) and high sulfur loading (6 mg·cm–2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信