细菌中ubia型氰烷合酶的发现

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Tyler A. Alsup, , , Diana P. Łomowska-Keehner, , , Melvin Osei Opoku, , , Zining Li, , , Caitlin A. McCadden, , , Tracy Qu, , , Glen Gillia, , , Jordan Nafie, , and , Jeffrey D. Rudolf*, 
{"title":"细菌中ubia型氰烷合酶的发现","authors":"Tyler A. Alsup,&nbsp;, ,&nbsp;Diana P. Łomowska-Keehner,&nbsp;, ,&nbsp;Melvin Osei Opoku,&nbsp;, ,&nbsp;Zining Li,&nbsp;, ,&nbsp;Caitlin A. McCadden,&nbsp;, ,&nbsp;Tracy Qu,&nbsp;, ,&nbsp;Glen Gillia,&nbsp;, ,&nbsp;Jordan Nafie,&nbsp;, and ,&nbsp;Jeffrey D. Rudolf*,&nbsp;","doi":"10.1021/acscatal.5c04650","DOIUrl":null,"url":null,"abstract":"<p >UbiA-type terpene synthases, traditionally annotated as prenyltransferases, have been shown to catalyze terpene cyclization in recent years, expanding their catalytic repertoire beyond primary metabolism. Here, we report on the genome-guided discovery and functional characterization of bacterial UbiA diterpene synthases (diTSs). Using a geranylgeranyl diphosphate (GGPP)-overproducing <i>Escherichia coli</i> system, we screened 32 candidate enzymes and identified five that generate structurally diverse diterpenes, two of which represent bacterial examples of cyathane synthases. Site-directed mutagenesis uncovered active-site residues that influence product formation, directing cyclization toward mono- or tricyclic products. This study expands the known catalytic repertoire of UbiA enzymes and highlights their untapped potential in bacterial terpenoid biosynthesis. Our findings suggest that bacteria may produce diverse and bioactive diterpenoids using UbiA TSs for the first committed biosynthetic step, warranting further exploration of UbiA TSs for natural product discovery.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 19","pages":"16873–16881"},"PeriodicalIF":13.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of UbiA-Type Cyathane Synthases in Bacteria\",\"authors\":\"Tyler A. Alsup,&nbsp;, ,&nbsp;Diana P. Łomowska-Keehner,&nbsp;, ,&nbsp;Melvin Osei Opoku,&nbsp;, ,&nbsp;Zining Li,&nbsp;, ,&nbsp;Caitlin A. McCadden,&nbsp;, ,&nbsp;Tracy Qu,&nbsp;, ,&nbsp;Glen Gillia,&nbsp;, ,&nbsp;Jordan Nafie,&nbsp;, and ,&nbsp;Jeffrey D. Rudolf*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c04650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >UbiA-type terpene synthases, traditionally annotated as prenyltransferases, have been shown to catalyze terpene cyclization in recent years, expanding their catalytic repertoire beyond primary metabolism. Here, we report on the genome-guided discovery and functional characterization of bacterial UbiA diterpene synthases (diTSs). Using a geranylgeranyl diphosphate (GGPP)-overproducing <i>Escherichia coli</i> system, we screened 32 candidate enzymes and identified five that generate structurally diverse diterpenes, two of which represent bacterial examples of cyathane synthases. Site-directed mutagenesis uncovered active-site residues that influence product formation, directing cyclization toward mono- or tricyclic products. This study expands the known catalytic repertoire of UbiA enzymes and highlights their untapped potential in bacterial terpenoid biosynthesis. Our findings suggest that bacteria may produce diverse and bioactive diterpenoids using UbiA TSs for the first committed biosynthetic step, warranting further exploration of UbiA TSs for natural product discovery.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 19\",\"pages\":\"16873–16881\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c04650\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c04650","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

ubia型萜烯合成酶,传统上被注释为戊烯基转移酶,近年来已被证明可以催化萜烯环化,将其催化范围扩展到初级代谢之外。在这里,我们报道了细菌UbiA二萜合成酶(diTSs)的基因组引导发现和功能表征。利用过量生产甘香叶二磷酸(GGPP)的大肠杆菌系统,我们筛选了32种候选酶,并确定了5种产生结构不同的二萜的酶,其中两种是氰烷合成酶的细菌例子。位点定向诱变揭示了影响产物形成的活性位点残基,将环化导向单环或三环产物。这项研究扩展了已知的UbiA酶的催化库,并强调了它们在细菌萜类生物合成中尚未开发的潜力。我们的研究结果表明,细菌可以利用UbiA TSs作为生物合成的第一步,产生多种生物活性的二萜类化合物,值得进一步探索UbiA TSs作为天然产物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery of UbiA-Type Cyathane Synthases in Bacteria

Discovery of UbiA-Type Cyathane Synthases in Bacteria

Discovery of UbiA-Type Cyathane Synthases in Bacteria

UbiA-type terpene synthases, traditionally annotated as prenyltransferases, have been shown to catalyze terpene cyclization in recent years, expanding their catalytic repertoire beyond primary metabolism. Here, we report on the genome-guided discovery and functional characterization of bacterial UbiA diterpene synthases (diTSs). Using a geranylgeranyl diphosphate (GGPP)-overproducing Escherichia coli system, we screened 32 candidate enzymes and identified five that generate structurally diverse diterpenes, two of which represent bacterial examples of cyathane synthases. Site-directed mutagenesis uncovered active-site residues that influence product formation, directing cyclization toward mono- or tricyclic products. This study expands the known catalytic repertoire of UbiA enzymes and highlights their untapped potential in bacterial terpenoid biosynthesis. Our findings suggest that bacteria may produce diverse and bioactive diterpenoids using UbiA TSs for the first committed biosynthetic step, warranting further exploration of UbiA TSs for natural product discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信