Sarah Salloum, Juliana Rüther, Zübeyde Celik, Christoph Janiak
{"title":"柠檬酸盐覆盖金纳米颗粒合成技术的比较分析:对控制形态和稳定性的优化湿化学方法的见解","authors":"Sarah Salloum, Juliana Rüther, Zübeyde Celik, Christoph Janiak","doi":"10.1039/d5nr02727f","DOIUrl":null,"url":null,"abstract":"Gold nanoparticles (AuNPs) hold immense potential in biomedical and technological applications due to their unique optical and physicochemical properties. While several studies have compared selected citrate-based AuNP synthesis methods, a comprehensive, side-by-side evaluation of multiple widely used protocols — tested both under their literature-reported conditions and under fully standardized parameters — remains limited. This study presents a systematic comparison of six wet-chemical synthesis techniques—including the classical Turkevich-Frens, reverse Turkevich-Frens, Slot-Geuze-based approaches, and both standard and reverse Natan reductions. By controlling key parameters—such as citrate-to-gold ratio and reagent addition sequence—we investigated how these factors influence particle size, shape, monodispersity, and colloidal stability. Among the methods tested, the reverse Turkevich-Frens technique reliably yielded the most monodisperse AuNPs (7–14 nm), while the rNR and rSG methods enabled the formation of ultrasmall AuNPs (2–6 nm) when paired with elevated citrate concentrations. These findings highlight the synergistic effects of citrate availability and reagent addition sequence in tuning AuNP properties. This work provides a robust comparative framework for selecting optimized synthesis methods of citrate-capped AuNPs and lays the foundation for surface functionalization and stabilization using biocompatible polymers in future studies.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of synthesis techniques for citrate-capped gold nanoparticles: Insights into optimized wet-chemical approaches for controlled morphology and stability †\",\"authors\":\"Sarah Salloum, Juliana Rüther, Zübeyde Celik, Christoph Janiak\",\"doi\":\"10.1039/d5nr02727f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold nanoparticles (AuNPs) hold immense potential in biomedical and technological applications due to their unique optical and physicochemical properties. While several studies have compared selected citrate-based AuNP synthesis methods, a comprehensive, side-by-side evaluation of multiple widely used protocols — tested both under their literature-reported conditions and under fully standardized parameters — remains limited. This study presents a systematic comparison of six wet-chemical synthesis techniques—including the classical Turkevich-Frens, reverse Turkevich-Frens, Slot-Geuze-based approaches, and both standard and reverse Natan reductions. By controlling key parameters—such as citrate-to-gold ratio and reagent addition sequence—we investigated how these factors influence particle size, shape, monodispersity, and colloidal stability. Among the methods tested, the reverse Turkevich-Frens technique reliably yielded the most monodisperse AuNPs (7–14 nm), while the rNR and rSG methods enabled the formation of ultrasmall AuNPs (2–6 nm) when paired with elevated citrate concentrations. These findings highlight the synergistic effects of citrate availability and reagent addition sequence in tuning AuNP properties. This work provides a robust comparative framework for selecting optimized synthesis methods of citrate-capped AuNPs and lays the foundation for surface functionalization and stabilization using biocompatible polymers in future studies.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr02727f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr02727f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative analysis of synthesis techniques for citrate-capped gold nanoparticles: Insights into optimized wet-chemical approaches for controlled morphology and stability †
Gold nanoparticles (AuNPs) hold immense potential in biomedical and technological applications due to their unique optical and physicochemical properties. While several studies have compared selected citrate-based AuNP synthesis methods, a comprehensive, side-by-side evaluation of multiple widely used protocols — tested both under their literature-reported conditions and under fully standardized parameters — remains limited. This study presents a systematic comparison of six wet-chemical synthesis techniques—including the classical Turkevich-Frens, reverse Turkevich-Frens, Slot-Geuze-based approaches, and both standard and reverse Natan reductions. By controlling key parameters—such as citrate-to-gold ratio and reagent addition sequence—we investigated how these factors influence particle size, shape, monodispersity, and colloidal stability. Among the methods tested, the reverse Turkevich-Frens technique reliably yielded the most monodisperse AuNPs (7–14 nm), while the rNR and rSG methods enabled the formation of ultrasmall AuNPs (2–6 nm) when paired with elevated citrate concentrations. These findings highlight the synergistic effects of citrate availability and reagent addition sequence in tuning AuNP properties. This work provides a robust comparative framework for selecting optimized synthesis methods of citrate-capped AuNPs and lays the foundation for surface functionalization and stabilization using biocompatible polymers in future studies.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.