生物可降解双刺激水凝胶支架材料协同释放压电离子和锂离子用于临界尺寸骨缺损的再生

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guanbo Min, Yue Peng, Wenjun Wang, Tingyu Wang, Yaqi Zhang, Zetao Yin, Fujie Lv, Xuanli Dong, Shuxing Xu, Kun Xu, En Zhao, Chengyu Li, Ke Wang, Xin Zhao, Jessica M Rosenholm, Weiguo Wang, Cheng Huang, Wei Tang
{"title":"生物可降解双刺激水凝胶支架材料协同释放压电离子和锂离子用于临界尺寸骨缺损的再生","authors":"Guanbo Min, Yue Peng, Wenjun Wang, Tingyu Wang, Yaqi Zhang, Zetao Yin, Fujie Lv, Xuanli Dong, Shuxing Xu, Kun Xu, En Zhao, Chengyu Li, Ke Wang, Xin Zhao, Jessica M Rosenholm, Weiguo Wang, Cheng Huang, Wei Tang","doi":"10.1002/adfm.202515477","DOIUrl":null,"url":null,"abstract":"Critical bone defects require interventional treatment as they exceed the body's natural repair capacity. The emerging approaches involve implantable biomaterial or devices, but persist challenges in biodegradability, low cell migration, and differentiation efficiency, complex surgery procedures. This study presents a biodegradable piezoionic hydrogels assembly scaffoldoid composed of piezoelectric glycine-based hydrogel and Li<sup>+</sup>-contained injectable conductive hydrogel. Upon ultrasound stimulation, the piezoelectric hydrogel generates an electric field that propagates through the conductive hydrogel. The regulation of Li<sup>+</sup> concentration to enhance the electrical conductivity of conductive hydrogels facilitates the recruitment of bone marrow mesenchymal stem cells (BMSCs) by the assembly. Under the synergistic stimulation of electrical signals and Li<sup>+</sup>, namely, dual-stimuli, the recruited BMSCs activated their PI3K/AKT and β-catenin/TCF7/CCN4 signaling pathways, thereby promoting the high expression of osteogenic genes such as RUNX2. Moreover, the conductive hydrogel is injectable, serving as a conformal scaffoldoid for full wound coverage, and the piezoelectric hydrogel can be seamlessly attached upon with the conductive hydrogel at the wound site, thereby simplifying the interventional repair procedures.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"102 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable Dual-Stimuli Hydrogel Scaffoldoid Synergizing Piezoionic and Lithium-Ion Release for Critical-Sized Bone Defect Regeneration\",\"authors\":\"Guanbo Min, Yue Peng, Wenjun Wang, Tingyu Wang, Yaqi Zhang, Zetao Yin, Fujie Lv, Xuanli Dong, Shuxing Xu, Kun Xu, En Zhao, Chengyu Li, Ke Wang, Xin Zhao, Jessica M Rosenholm, Weiguo Wang, Cheng Huang, Wei Tang\",\"doi\":\"10.1002/adfm.202515477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Critical bone defects require interventional treatment as they exceed the body's natural repair capacity. The emerging approaches involve implantable biomaterial or devices, but persist challenges in biodegradability, low cell migration, and differentiation efficiency, complex surgery procedures. This study presents a biodegradable piezoionic hydrogels assembly scaffoldoid composed of piezoelectric glycine-based hydrogel and Li<sup>+</sup>-contained injectable conductive hydrogel. Upon ultrasound stimulation, the piezoelectric hydrogel generates an electric field that propagates through the conductive hydrogel. The regulation of Li<sup>+</sup> concentration to enhance the electrical conductivity of conductive hydrogels facilitates the recruitment of bone marrow mesenchymal stem cells (BMSCs) by the assembly. Under the synergistic stimulation of electrical signals and Li<sup>+</sup>, namely, dual-stimuli, the recruited BMSCs activated their PI3K/AKT and β-catenin/TCF7/CCN4 signaling pathways, thereby promoting the high expression of osteogenic genes such as RUNX2. Moreover, the conductive hydrogel is injectable, serving as a conformal scaffoldoid for full wound coverage, and the piezoelectric hydrogel can be seamlessly attached upon with the conductive hydrogel at the wound site, thereby simplifying the interventional repair procedures.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202515477\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202515477","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

严重的骨缺损需要介入治疗,因为它们超出了人体的自然修复能力。新兴的方法包括植入式生物材料或设备,但在生物可降解性、低细胞迁移和分化效率、复杂的手术程序等方面仍然存在挑战。本研究提出了一种由压电甘氨酸基水凝胶和含Li+的可注射导电水凝胶组成的可生物降解的压电离子水凝胶组装支架。在超声刺激下,压电水凝胶产生电场,该电场通过导电水凝胶传播。通过调节Li+浓度增强导电水凝胶的导电性,促进了骨髓间充质干细胞(BMSCs)的聚集。在电信号和Li+的协同刺激下,即双重刺激下,募集的骨髓间充质干细胞激活其PI3K/AKT和β-catenin/TCF7/CCN4信号通路,从而促进RUNX2等成骨基因的高表达。此外,导电水凝胶是可注射的,作为保形支架完全覆盖伤口,压电水凝胶可以在伤口部位与导电水凝胶无缝附着,从而简化了介入修复程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biodegradable Dual-Stimuli Hydrogel Scaffoldoid Synergizing Piezoionic and Lithium-Ion Release for Critical-Sized Bone Defect Regeneration

Biodegradable Dual-Stimuli Hydrogel Scaffoldoid Synergizing Piezoionic and Lithium-Ion Release for Critical-Sized Bone Defect Regeneration
Critical bone defects require interventional treatment as they exceed the body's natural repair capacity. The emerging approaches involve implantable biomaterial or devices, but persist challenges in biodegradability, low cell migration, and differentiation efficiency, complex surgery procedures. This study presents a biodegradable piezoionic hydrogels assembly scaffoldoid composed of piezoelectric glycine-based hydrogel and Li+-contained injectable conductive hydrogel. Upon ultrasound stimulation, the piezoelectric hydrogel generates an electric field that propagates through the conductive hydrogel. The regulation of Li+ concentration to enhance the electrical conductivity of conductive hydrogels facilitates the recruitment of bone marrow mesenchymal stem cells (BMSCs) by the assembly. Under the synergistic stimulation of electrical signals and Li+, namely, dual-stimuli, the recruited BMSCs activated their PI3K/AKT and β-catenin/TCF7/CCN4 signaling pathways, thereby promoting the high expression of osteogenic genes such as RUNX2. Moreover, the conductive hydrogel is injectable, serving as a conformal scaffoldoid for full wound coverage, and the piezoelectric hydrogel can be seamlessly attached upon with the conductive hydrogel at the wound site, thereby simplifying the interventional repair procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信