{"title":"生活在边缘:未承诺的opc样细胞驱动胶质母细胞瘤侵袭性","authors":"Upendra K. Soni, Q. Richard Lu","doi":"10.1016/j.devcel.2025.08.002","DOIUrl":null,"url":null,"abstract":"Glioblastoma invasion has been linked to mesenchymal states. However, in this issue of <em>Developmental Cell</em>, Wu et al. identify peritumoral, uncommitted oligodendrocyte progenitor-like cells as key invasive drivers that hijack neurodevelopmental programs to infiltrate the brain parenchyma, suggesting that targeting lineage differentiation and neuron-tumor networks may limit glioblastoma spread.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"8 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Living on the edge: Uncommitted OPC-like cells drive glioblastoma invasiveness\",\"authors\":\"Upendra K. Soni, Q. Richard Lu\",\"doi\":\"10.1016/j.devcel.2025.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma invasion has been linked to mesenchymal states. However, in this issue of <em>Developmental Cell</em>, Wu et al. identify peritumoral, uncommitted oligodendrocyte progenitor-like cells as key invasive drivers that hijack neurodevelopmental programs to infiltrate the brain parenchyma, suggesting that targeting lineage differentiation and neuron-tumor networks may limit glioblastoma spread.\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2025.08.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.08.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Living on the edge: Uncommitted OPC-like cells drive glioblastoma invasiveness
Glioblastoma invasion has been linked to mesenchymal states. However, in this issue of Developmental Cell, Wu et al. identify peritumoral, uncommitted oligodendrocyte progenitor-like cells as key invasive drivers that hijack neurodevelopmental programs to infiltrate the brain parenchyma, suggesting that targeting lineage differentiation and neuron-tumor networks may limit glioblastoma spread.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.