Zizhu Tan, Chia-Heng Hsiung, Jiahui Feng, Yangye Zhang, Yihan Wan, Junlin Chen, Ke Sun, Peilong Lu, Jianyang Zang, Wenxing Yang, Ya Gao, Jiabin Yin, Tong Zhu, Yang Lu, Zijian Pan, Yilong Zou, Can Liao, Xiaosong Li, Yuxuan Ye, Yu Liu, Xin Zhang
{"title":"时间分辨荧光蛋白扩展荧光显微镜在时间和光谱领域","authors":"Zizhu Tan, Chia-Heng Hsiung, Jiahui Feng, Yangye Zhang, Yihan Wan, Junlin Chen, Ke Sun, Peilong Lu, Jianyang Zang, Wenxing Yang, Ya Gao, Jiabin Yin, Tong Zhu, Yang Lu, Zijian Pan, Yilong Zou, Can Liao, Xiaosong Li, Yuxuan Ye, Yu Liu, Xin Zhang","doi":"10.1016/j.cell.2025.08.035","DOIUrl":null,"url":null,"abstract":"Fluorescence microscopy has been widely applied in the life sciences. While intensity as a steady-state signal is widely used, the time-resolved (tr) signal using fluorescence lifetime remains underexplored. Herein, we present a family of time-resolved fluorescent proteins (tr-FPs) with rationally controlled lifetimes. Using a strategy that regulates lifetime without affecting the spectra of FPs, we have developed a series of tr-FPs that cover the visible spectrum and a wide range of lifetimes. The tr-FPs are employed in temporal-spectral resolved microscopy, allowing for the simultaneous imaging of 9 different proteins in live cells and the correlation of multiple activities to cell cycles. Furthermore, tr-FPs enable multiplexing super-resolution microscopy that concurrently visualizes 4 proteins using the lifetime signal and are demonstrated to quantify the stoichiometry of cellular proteins. Our work introduces the concept and development of tr-FPs as a transformative toolset, presenting opportunities to integrate system complexity and quantitative accuracy into biological research.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"317 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-resolved fluorescent proteins expand fluorescent microscopy in temporal and spectral domains\",\"authors\":\"Zizhu Tan, Chia-Heng Hsiung, Jiahui Feng, Yangye Zhang, Yihan Wan, Junlin Chen, Ke Sun, Peilong Lu, Jianyang Zang, Wenxing Yang, Ya Gao, Jiabin Yin, Tong Zhu, Yang Lu, Zijian Pan, Yilong Zou, Can Liao, Xiaosong Li, Yuxuan Ye, Yu Liu, Xin Zhang\",\"doi\":\"10.1016/j.cell.2025.08.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence microscopy has been widely applied in the life sciences. While intensity as a steady-state signal is widely used, the time-resolved (tr) signal using fluorescence lifetime remains underexplored. Herein, we present a family of time-resolved fluorescent proteins (tr-FPs) with rationally controlled lifetimes. Using a strategy that regulates lifetime without affecting the spectra of FPs, we have developed a series of tr-FPs that cover the visible spectrum and a wide range of lifetimes. The tr-FPs are employed in temporal-spectral resolved microscopy, allowing for the simultaneous imaging of 9 different proteins in live cells and the correlation of multiple activities to cell cycles. Furthermore, tr-FPs enable multiplexing super-resolution microscopy that concurrently visualizes 4 proteins using the lifetime signal and are demonstrated to quantify the stoichiometry of cellular proteins. Our work introduces the concept and development of tr-FPs as a transformative toolset, presenting opportunities to integrate system complexity and quantitative accuracy into biological research.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"317 1\",\"pages\":\"\"},\"PeriodicalIF\":42.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2025.08.035\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.08.035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Time-resolved fluorescent proteins expand fluorescent microscopy in temporal and spectral domains
Fluorescence microscopy has been widely applied in the life sciences. While intensity as a steady-state signal is widely used, the time-resolved (tr) signal using fluorescence lifetime remains underexplored. Herein, we present a family of time-resolved fluorescent proteins (tr-FPs) with rationally controlled lifetimes. Using a strategy that regulates lifetime without affecting the spectra of FPs, we have developed a series of tr-FPs that cover the visible spectrum and a wide range of lifetimes. The tr-FPs are employed in temporal-spectral resolved microscopy, allowing for the simultaneous imaging of 9 different proteins in live cells and the correlation of multiple activities to cell cycles. Furthermore, tr-FPs enable multiplexing super-resolution microscopy that concurrently visualizes 4 proteins using the lifetime signal and are demonstrated to quantify the stoichiometry of cellular proteins. Our work introduces the concept and development of tr-FPs as a transformative toolset, presenting opportunities to integrate system complexity and quantitative accuracy into biological research.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.