Zhi Wei, Li Zhao, Hrvoje Tkalčić, Kaiyue Zheng, Yi Wang
{"title":"基于频率相关走时的伴随层析成像揭示云南地区地壳结构","authors":"Zhi Wei, Li Zhao, Hrvoje Tkalčić, Kaiyue Zheng, Yi Wang","doi":"10.1029/2024JB030719","DOIUrl":null,"url":null,"abstract":"<p>We conduct a high-resolution seismic tomography for the crustal P and S-wave velocities of Yunnan region in southwestern China. Waveforms recorded at 128 broadband stations from 131 regional earthquakes of moment magnitudes 3.9–5.5 occurring between 2009 and 2021 are used to obtain traveltime residuals by the cross-correlation between records and synthetics. Using the regional community velocity model SWChinaCVM-1.0 as the initial model, we carry out a three-stage iterative adjoint tomography, progressing from the longer period band of 50–20 s to shorter-period bands of 30–10 s and 30–5 s. The final model shows general consistency in the spatial patterns of P- and S-wave velocity anomalies. Widespread low-velocity anomalies with high-Vp/Vs ratios in the mid and lower crust in the region suggest that weak materials of the mid-lower crustal flow migrate through the channels formed by the deep mantle plume that led to the Emeishan Large Igneous Province. Localized velocity and Vp/Vs ratio anomalies also reveal that the Lijiang-Xiaojinhe Fault Zone appears to be confined in the upper crust, while the Anninghe-Zemuhe Fault Zone and the Xiaojiang Fault Zone are both whole-crust structures reaching the Moho interface. The Red River Fault Zone, a whole-crust fault, separates the Yangtze Craton to the northeast from the Indo-China Block to the southwest. The main fault zones, the decoupling between the crustal and uppermost mantle parts, and the widespread weak mid-lower crustal materials mutually interact, all contributing to the tectonic evolution of the entire region.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crustal Structure of the Yunnan Region, China Revealed by Adjoint Tomography Based on Frequency-Dependent Traveltimes\",\"authors\":\"Zhi Wei, Li Zhao, Hrvoje Tkalčić, Kaiyue Zheng, Yi Wang\",\"doi\":\"10.1029/2024JB030719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We conduct a high-resolution seismic tomography for the crustal P and S-wave velocities of Yunnan region in southwestern China. Waveforms recorded at 128 broadband stations from 131 regional earthquakes of moment magnitudes 3.9–5.5 occurring between 2009 and 2021 are used to obtain traveltime residuals by the cross-correlation between records and synthetics. Using the regional community velocity model SWChinaCVM-1.0 as the initial model, we carry out a three-stage iterative adjoint tomography, progressing from the longer period band of 50–20 s to shorter-period bands of 30–10 s and 30–5 s. The final model shows general consistency in the spatial patterns of P- and S-wave velocity anomalies. Widespread low-velocity anomalies with high-Vp/Vs ratios in the mid and lower crust in the region suggest that weak materials of the mid-lower crustal flow migrate through the channels formed by the deep mantle plume that led to the Emeishan Large Igneous Province. Localized velocity and Vp/Vs ratio anomalies also reveal that the Lijiang-Xiaojinhe Fault Zone appears to be confined in the upper crust, while the Anninghe-Zemuhe Fault Zone and the Xiaojiang Fault Zone are both whole-crust structures reaching the Moho interface. The Red River Fault Zone, a whole-crust fault, separates the Yangtze Craton to the northeast from the Indo-China Block to the southwest. The main fault zones, the decoupling between the crustal and uppermost mantle parts, and the widespread weak mid-lower crustal materials mutually interact, all contributing to the tectonic evolution of the entire region.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"130 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JB030719\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JB030719","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Crustal Structure of the Yunnan Region, China Revealed by Adjoint Tomography Based on Frequency-Dependent Traveltimes
We conduct a high-resolution seismic tomography for the crustal P and S-wave velocities of Yunnan region in southwestern China. Waveforms recorded at 128 broadband stations from 131 regional earthquakes of moment magnitudes 3.9–5.5 occurring between 2009 and 2021 are used to obtain traveltime residuals by the cross-correlation between records and synthetics. Using the regional community velocity model SWChinaCVM-1.0 as the initial model, we carry out a three-stage iterative adjoint tomography, progressing from the longer period band of 50–20 s to shorter-period bands of 30–10 s and 30–5 s. The final model shows general consistency in the spatial patterns of P- and S-wave velocity anomalies. Widespread low-velocity anomalies with high-Vp/Vs ratios in the mid and lower crust in the region suggest that weak materials of the mid-lower crustal flow migrate through the channels formed by the deep mantle plume that led to the Emeishan Large Igneous Province. Localized velocity and Vp/Vs ratio anomalies also reveal that the Lijiang-Xiaojinhe Fault Zone appears to be confined in the upper crust, while the Anninghe-Zemuhe Fault Zone and the Xiaojiang Fault Zone are both whole-crust structures reaching the Moho interface. The Red River Fault Zone, a whole-crust fault, separates the Yangtze Craton to the northeast from the Indo-China Block to the southwest. The main fault zones, the decoupling between the crustal and uppermost mantle parts, and the widespread weak mid-lower crustal materials mutually interact, all contributing to the tectonic evolution of the entire region.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.