环境中微生物固氮与铁还原的协同作用。

Xiaohan Liu,Ping Li,Keman Bao,Yaqi Wang,Helin Wang,Yanhong Wang,Zhou Jiang,Yi Yang,Songhu Yuan,Andreas Kappler,Yanxin Wang
{"title":"环境中微生物固氮与铁还原的协同作用。","authors":"Xiaohan Liu,Ping Li,Keman Bao,Yaqi Wang,Helin Wang,Yanhong Wang,Zhou Jiang,Yi Yang,Songhu Yuan,Andreas Kappler,Yanxin Wang","doi":"10.1093/ismejo/wraf212","DOIUrl":null,"url":null,"abstract":"Nitrogen and iron are essential yet often limiting nutrients in many ecosystems. Microbial nitrogen fixation by diazotrophs and dissimilatory ferric iron reduction are key processes that sustain nitrogen and iron availability. However, their interactions are not well understood. Here, we demonstrate a synergistic relationship between microbial nitrogen fixation and ferric iron reduction, observed in both laboratory cultures and environmental samples. In diazotrophic ferric iron-reducing bacteria, including Klebsiella grimontii N7 and Geobacter sulfurreducens PCA, nitrogen fixation enhanced heterotrophic ferric iron-reducing rates by 14.7- and 2.69-fold, respectively, and ferric iron reduction concurrently increased 15N2 fixation by up to 100%. A similar synergy was observed in an interspecies system comprising the diazotroph Azospirillum humicireducens SgZ-5 T and the dissimilatory ferric iron-reducing bacterium Shewanella oneidensis MR-1. Transcriptomic analysis revealed that nitrogen fixation upregulated pathways involved in carbon and nitrogen metabolism, including amino acid biosynthesis, glycolysis, and the tricarboxylic acid cycle (P < 0.01), thereby accelerating ferric iron reduction through nitrogen supply. In turn, ferric iron reduction stimulated organic carbon oxidation, generating the energy and reducing equivalents needed for microbial nitrogen fixation. These findings were further validated through microcosm experiments and meta-omics analyses of environmental samples from aquifers, marine sediments, hot springs, and soils, providing new insights into the coupled nitrogen, iron, and carbon cycles in natural ecosystems.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic interaction between microbial nitrogen fixation and iron reduction in the environment.\",\"authors\":\"Xiaohan Liu,Ping Li,Keman Bao,Yaqi Wang,Helin Wang,Yanhong Wang,Zhou Jiang,Yi Yang,Songhu Yuan,Andreas Kappler,Yanxin Wang\",\"doi\":\"10.1093/ismejo/wraf212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen and iron are essential yet often limiting nutrients in many ecosystems. Microbial nitrogen fixation by diazotrophs and dissimilatory ferric iron reduction are key processes that sustain nitrogen and iron availability. However, their interactions are not well understood. Here, we demonstrate a synergistic relationship between microbial nitrogen fixation and ferric iron reduction, observed in both laboratory cultures and environmental samples. In diazotrophic ferric iron-reducing bacteria, including Klebsiella grimontii N7 and Geobacter sulfurreducens PCA, nitrogen fixation enhanced heterotrophic ferric iron-reducing rates by 14.7- and 2.69-fold, respectively, and ferric iron reduction concurrently increased 15N2 fixation by up to 100%. A similar synergy was observed in an interspecies system comprising the diazotroph Azospirillum humicireducens SgZ-5 T and the dissimilatory ferric iron-reducing bacterium Shewanella oneidensis MR-1. Transcriptomic analysis revealed that nitrogen fixation upregulated pathways involved in carbon and nitrogen metabolism, including amino acid biosynthesis, glycolysis, and the tricarboxylic acid cycle (P < 0.01), thereby accelerating ferric iron reduction through nitrogen supply. In turn, ferric iron reduction stimulated organic carbon oxidation, generating the energy and reducing equivalents needed for microbial nitrogen fixation. These findings were further validated through microcosm experiments and meta-omics analyses of environmental samples from aquifers, marine sediments, hot springs, and soils, providing new insights into the coupled nitrogen, iron, and carbon cycles in natural ecosystems.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多生态系统中,氮和铁是必不可少的,但往往是限制性的营养物质。重氮营养体的微生物固氮和异化铁还原是维持氮和铁可用性的关键过程。然而,它们之间的相互作用还没有被很好地理解。在这里,我们证明了微生物固氮和铁还原之间的协同关系,在实验室培养和环境样品中观察到。在重氮营养铁还原菌中,包括格氏克雷伯菌N7和硫还原地杆菌PCA,固氮使异养铁还原率分别提高了14.7倍和2.69倍,而铁还原同时使15N2固定率提高了100%。在一个由重氮营养菌(Azospirillum humicireducens sgz - 5t)和异同化铁还原菌(Shewanella oneidensis MR-1)组成的种间系统中也观察到类似的协同作用。转录组学分析显示,固氮上调了氨基酸生物合成、糖酵解和三羧酸循环等碳氮代谢途径(P < 0.01),从而通过氮供应加速了铁还原。反过来,铁还原刺激有机碳氧化,产生微生物固氮所需的能量和还原物。这些发现通过微观实验和对含水层、海洋沉积物、温泉和土壤等环境样本的元组学分析得到进一步验证,为自然生态系统中氮、铁和碳的耦合循环提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic interaction between microbial nitrogen fixation and iron reduction in the environment.
Nitrogen and iron are essential yet often limiting nutrients in many ecosystems. Microbial nitrogen fixation by diazotrophs and dissimilatory ferric iron reduction are key processes that sustain nitrogen and iron availability. However, their interactions are not well understood. Here, we demonstrate a synergistic relationship between microbial nitrogen fixation and ferric iron reduction, observed in both laboratory cultures and environmental samples. In diazotrophic ferric iron-reducing bacteria, including Klebsiella grimontii N7 and Geobacter sulfurreducens PCA, nitrogen fixation enhanced heterotrophic ferric iron-reducing rates by 14.7- and 2.69-fold, respectively, and ferric iron reduction concurrently increased 15N2 fixation by up to 100%. A similar synergy was observed in an interspecies system comprising the diazotroph Azospirillum humicireducens SgZ-5 T and the dissimilatory ferric iron-reducing bacterium Shewanella oneidensis MR-1. Transcriptomic analysis revealed that nitrogen fixation upregulated pathways involved in carbon and nitrogen metabolism, including amino acid biosynthesis, glycolysis, and the tricarboxylic acid cycle (P < 0.01), thereby accelerating ferric iron reduction through nitrogen supply. In turn, ferric iron reduction stimulated organic carbon oxidation, generating the energy and reducing equivalents needed for microbial nitrogen fixation. These findings were further validated through microcosm experiments and meta-omics analyses of environmental samples from aquifers, marine sediments, hot springs, and soils, providing new insights into the coupled nitrogen, iron, and carbon cycles in natural ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信